「AGIへの道」飛書ナレッジベースへ直行 →

如何将私有模型部署到微信

回答

以下是将私有模型部署到微信的几种方法:

  1. 张梦飞的方法:
    • 部署大语言模型:
      • 下载并安装 Ollama:根据您的电脑系统,从 https://ollama.com/download 下载,下载完成后双击打开,点击“Install”。安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器,若出现相关字样则表示安装完成。
      • 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型):如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行并粘贴回车,等待自动下载完成。
  2. 安仔的方法:
    • 配置腾讯云轻量应用服务器。
    • 配置部署 COW 组件:配置 GROUP_NAME_WHITE_LIST 参数,根据要交互的群组进行具体修改,保存编排模板。切换到容器编排界面,基于模板进行 COW 服务部署,等待部署成功。
  3. 马上观看看的方法:
    • 部署 dify:选择模型,以智谱 ai 举例,点设置,点从智谱 ai 获取钥匙,进入智谱官网用手机号注册,添加 API keys 并复制,查看免费额度并收藏网址。回到之前页面复制钥匙并保存,随便创建应用,可先选择智谱 glm-4 测试,点发布,点击 api 秘钥创建并复制。
AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+ Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

安仔:不用黑魔法,小白也能做一个对接 GPT 大模型的微信聊天机器人

还有这个参数GROUP_NAME_WHITE_LIST,它是用来配置哪些群组的消息需要自动回复的,比如我这里配置的是["ChatGPT测试群","ChatGPT测试群2"],即只有ChatGPT测试群和ChatGPT测试群2的群组消息才会自动回复。所以假设我要对接的微信号的名称叫安仔机器人,我们就可以更新最终版的配置参数(GROUP_NAME_WHITE_LIST参数记得根据你要交互的群组进行具体修改),查看过没问题,就点击保存,这个编排模板就创建成功了,当然以后你的需求可能有所变化,你也可以继续修改这个模板,然后基于它来重新建立我们接下来的具体COW服务:1.现在我们就切换到容器编排界面,开始基于我们刚刚创建的模板进行真正的COW服务部署,点击添加后,部署会开始进行,可能需要等待一会时间:1.等待一会后,我们会看到我们的COW服务就这样部署成功了!

马上观看看:通过云服务器,dify,智能微秘书来免费搭建微信机器人

这时候你就可以选择模型了,国内的模型都有免费额度,随便选,你也可以都选。拿智谱ai举例。点设置,点从智谱ai获取钥匙,直接会进入智谱的官网。用手机号注册,添加API keys,复制一下。然后看一下有多少免费额度,智谱是资源包管理里边看,赠送500万一个月。这些大模型有的限制时间,有的不限制。有的给tokens额度有的给钱。最后把网址收藏一下。回到上面的图,把钥匙复制,保存就可以了。然后随便创建个应用。可以先选择智谱glm-4测试一下,聊两句,看有回应没,然后点发布。选择第二个,如图:点击api秘钥,创建一个,复制。

他の質問
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
微信智能客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例中通过创建 Bot 创建。侧边导航栏一直有创建 Bot 的方式,仅主页有 Coze Assistant。两者区别在于: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮您教她技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,发布流程较复杂,下面是重新注册和解绑后重新配置的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-15
coze的智能体如何接入微信?
要将 Coze 智能体接入微信,可按以下步骤操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可以看到运行的是两个服务。 2. 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效作为过期时间,指定团队空间,勾选所有权限。保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏 bot/之后的数据就是该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 绑定微信:准备一个闲置的微信,点击容器,点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。手动刷新界面,点击“刷新日志”,若看到 WeChat login success,即表示微信登录成功。为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,若显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试:把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。
2025-04-11
怎么搭建微信机器人?
以下是搭建微信机器人的步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 如果想为这个 AI 赋予提示词,可以返回相应步骤进行更改。例如在“目录 4 里的第 17 步”或“第三章,第 7 步”,其中双引号内的 value 部分,便是设置 AI 提示词的地方。 3. 此后,进行任何更改,都需要重新打印登陆二维码。并且一个月内,不要上来就加好友、最好不要私聊聊天。 4. 报错"wxsid"是因为微信未实名,实名即可解决。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 重新在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录。 7. 多次重新登录后,就在宝塔“首页右上角点击重启,重启一下服务器”,清理进程。 8. 熟悉 linux 操作的话,也可以通过重启进程的方式来重启服务。 9. 如果想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 此外: 1. Link AI 提供的 100 个,合计 3500 万 GPT3.5 Token 的礼品码。可以用来实现画图、搜索、识图等功能,COW 插件里几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,领兑换码。 2. 添加微信,拉您进机器人群,先行体验。 如果您仍旧遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可以加 Stuart 个人微信询问。
2025-04-11
智能微信客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例通过创建 Bot 创建。侧边导航栏一直有创建 Bot 方式,仅主页有 Coze Assistant。两者区别为: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮教技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,是本次分享重点,发布较复杂,下面是重新注册和解绑后重新配置微信客服的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营无间断。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-10
微信机器人如何配置
微信机器人的配置步骤如下: 1. sum4all 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 sum4all 插件目录下的 config.json.template,复制并粘贴重命名为:config.json 注册并获取 sum4all key:https://pro.sum4all.site/register?aff=T6rP ,新用户注册有送免费额度,大家先使用这个进行试用,后续可改为自己的 openAI key。 把复制的 key,粘贴到 sum4all 的 config.json 文件内。(上方有功能阐述,你想要哪个,就把哪个改成 ture) 2. Apilot 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 Apilot 文件下的 config.json.template,复制并粘贴重命名为:config.json 去 https://admin.alapi.cn/account/center 注册,并复制 key 把复制来的 key,粘贴进入。保存。 3. 分段对话配置替换 找到这个路径:/root/chatgptonwechat/channel/wechat,直接下载以下文件进行替换。 此外,微信的配置相对较简单,只需要主项目的 config.json 文件看看是否有"channel_type"参数,参数值为:"wx",即:"channel_type":"wx"。完成以上所有配置部分后,可以准备启动步骤了: 使用 nohup 命令在后台运行程序。 执行完启动脚本,等待 30s 左右,会看到终端有一个微信登录的二维码,微信扫码登录。 如果您想使用更多辅助功能,比如使用总结文件能力,总结网页内容能力,此时需要安装各种插件。这部分配置查看插件配置管理部分。
2025-04-10
DEEP SEEK 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)
以下是关于 Deep Seek 本地部署(Olama + ChatBox)+私有知识库(cherrystudio)的相关内容: 一、使用 Docker + RAGFlow + Ollama 搭建个人/企业知识库 1. 将 Ollama 部署的模型接入 GARFlow 返回 RAGFlow 中,打开右上角设置,进入模型提供商,配置 Ollama 相关信息,基础 URL 按要求设置,设置完成后点击确定。 导入一个 embedding 模型用于文本向量化,导入成功后设置系统模型设置,然后返回知识库创建知识库。 进入数据集,导入文件(可设置文件夹当作知识库),导入完毕后解析文件,解析速度取决于本机 GPU 性能,解析好后进行检索测试,测试没问题即可进入聊天界面,助理设置可自行设置。 2. 使用 Ollama 本地部署 DeepSeek 模型 先下载 Ollama 程序,官方网址:https://ollama.com/ 。 下载默认到 C 盘(一般为固态盘,运行速度快),若想修改安装目录到 D 盘,后续会有说明。 下载完右下角会出现 Ollama 图标,打开命令行输入相关命令回车。 若显卡是英伟达 2060Super,可选择 Deepseekr1:14b 的模型,根据自身独立显卡性能下载。 下载速度慢可按 Ctrl+C 强制退出重新下载。 下载完毕后再下载一个嵌入模型,Ollama 的 bge 模型官方网址:https://ollama.com/library/bgem3 ,输入相关命令,下载好后直接退出终端。 二、Flowith 相关报道、采访、使用指南 |标题|发布账号|社媒来源|日期|链接| |||||| |ChatGPT 的对话框过时了?这款 AI 产品提供了一种很新的聊天方式|爱范儿|公众号|2024/04/29|| |Flowith:革新你的工作方式,体验节点式 AI 的超流畅生产力|程序那些事儿|公众号|2024/05/03|| |体验 Flowith:探索人机交互从传统聊天对话到画布式知识管理的转变|AI 兔子洞|公众号|2024/04/22|| |deepseek 服务器繁忙?硅基流不动?看看这篇,内含 18 个平台,可能是最全的 deepseek 方案。|佐佐的 AI 笔记|公众号|2025/02/06|| |满血版自部署 DeepSeekR1+知识库+联网搜索,体验下来可能就只剩下这家了!|字节笔记本|公众号|2025/02/12|| |DeepSeek 让 AI 圈卷出了新高度:Flowith 宣布 DeepSeek R1 现在免费提供!|字节笔记本|公众号|2025/01/27|| |ShowMeAI 周刊 No.15|上周最有讨论度的 6 个 AI 话题:自由画布类产品密集更新、多主体一致成发展趋势、AGI、开源…|ShowMeAI 研究中心|公众号|2025/01/21||
2025-04-10
搭建私有大模型
搭建私有大模型可以参考以下几种方法: 1. 方法一 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时会告知如何白嫖大模型接口。 搭建,这是一个知识库问答系统,将知识文件放入,并接入上面的大模型作为分析知识库的大脑,最后回答问题。若不想接入微信,搭建完此系统即可,它也有问答界面。 搭建,其中的cow插件能进行文件总结、MJ绘画。 2. 方法二 部署大语言模型: 下载并安装Ollama,根据电脑系统,从https://ollama.com/download 下载。下载完成后,双击打开,点击“Install”。安装完成后,将下方地址复制进浏览器中,若出现相关字样,表示安装完成:http://127.0.0.1:11434/ 。 下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,设备充足可下载更大模型)。若为windows电脑,点击win+R,输入cmd,点击回车;若为Mac电脑,按下Command(⌘)+Space键打开Spotlight搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 3. 方法三 企业大模型四步走的第一步是私有化部署通用大模型,一是解决AI科普问题,二是满足一些通用需求。若有能力,可赠送免费的私有化部署通用大模型,其为千亿模型的缩小版、浓缩版,能解决科普问题,让企业员工熟悉大模型,同时满足办公等通用需求。此外,还提供了360AI办公的一套会员服务,围绕办公营销需求做了很多工具,以订阅模式耗费算力,每天几乎一块钱。
2025-03-26
deepseek 私有化部署
DeepSeek 的私有化部署相关信息如下: PaaS 平台特性:支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 云端部署操作:登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 模型试用方法:使用 postman,通过修改接口和复制文档中的内容进行在线调试,发送请求查看状态码,根据模型名称和相关要求输入内容进行试用。 作业布置:部署成功一个大语言模型,通过调试证明成功,在调试内容中带上钉钉昵称向模型对话,将成功结果提交问卷可获得阿里云小礼包。 API 调用与服务关停:介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 模型蒸馏概念:教师模型将知识蒸馏给学生模型,有多种蒸馏方式,如 R1 通过蒸馏数据集并用于学生模型微调。 蒸馏应用场景:包括车机等算力有限场景,能让小模型在特定领域有良好效果,还能实现低成本高速推理和修复模型幻觉。 模型部署实操:在 model gallery 中选择模型,如 1000 问 7B 指令模型,进行部署,选择 VIM 加速和竞价模式,查看部署状态和日志。 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 Deepseek R1 模型的制作及相关模型比较:R1 模型通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。
2025-03-24
如何一步一步实现RAG 模型的私有化部署
要一步一步实现 RAG 模型的私有化部署,可参考以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 4. 关于 ollama: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,用户可从中下载不同模型,满足不同需求和硬件条件,可通过 https://ollama.com/library 查找。 支持自定义模型,可修改模型温度参数等。 提供 REST API 用于运行和管理模型及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 需先安装,访问 https://ollama.com/download/ 下载安装,安装后确保 ollama 后台服务已启动。 5. 基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答问题实现 RAG。 6. 创建网页 UI:通过 gradio 创建网页 UI 并进行评测。 总结: 1. 本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人,结合 RSSHub 处理和提供资讯。 2. 上下文数据质量和大模型的性能决定 RAG 系统性能上限。
2025-03-20
RAG 模型的私有化部署
RAG 模型的私有化部署通常在商业化过程中被用于结合企业私有数据。在企业有特殊需求时,还可对模型进行微调以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。 构建有效的 RAG 系统需要考虑多个因素: 1. 数据安全性:若有需求,需进行私有化部署,并考虑硬件成本。 2. 数据集复杂度和数量级:复杂数据集带来高昂的文档清洗、解析和分割成本,大数据量级带来存储成本上升。 3. 回答质量要求:要求越高,需要越复杂的检索算法和更强大的 LLM,带来算力成本。 4. 数据更新频率:频繁更新可能需要高昂的维护成本。 此外,实现本地部署资讯问答机器人时,如 Langchain + Ollama + RSSHub 实现 RAG,需导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。
2025-03-20
RAG 模型的私有化部署
RAG 模型的私有化部署通常在商业化过程中被用于结合企业私有数据。在企业有特殊需求时,还可对模型进行微调以优化性能。基础模型负责提供推理提示,RAG 用于整合新知识、实现快速迭代和定制化信息检索。 构建有效的 RAG 系统并不简单,企业若要进行私有化部署,需考虑以下因素: 1. 数据安全性:若有需求,需考虑硬件成本。 2. 数据集复杂度和数量级:复杂数据集会带来高昂的文档清洗、解析和分割成本,大数据量级会带来存储成本上升。 3. 回答质量要求:要求越高,需要越复杂的检索算法和更强大的 LLM,会带来算力成本。 4. 数据更新频率:频繁更新可能需要高昂的维护成本。 此外,实现 RAG 模型私有化部署还涉及一些技术操作,如本地部署资讯问答机器人时,需要导入依赖库、从订阅源获取内容、为文档内容生成向量等。
2025-03-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
如何本地部署大模型,如何选择是否使用云服务商
以下是关于本地部署大模型以及选择是否使用云服务商的相关内容: 本地部署大模型的主要步骤: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 以 SDXL 为例的本地部署步骤: 1. SDXL 的大模型分为两个部分,base+refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对生成的模型进行细化,生成细节更丰富的图片。还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 2. 想要在 webUI 中使用 SDXL 的大模型,首先要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,启动 webUI,就可以在模型中看到 SDXL 的模型。 以 LLM 大语言模型为例的本地部署步骤: 1. 下载并安装 Ollama,点击进入根据电脑系统下载 Ollama:https://ollama.com/download ,下载完成后,双击打开,点击“Install”,安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。如果是 windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车,等待下载完成。 总的来说,部署大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-14
本地部署
SDXL 的本地部署步骤如下: 1. 模型下载:SDXL 的大模型分为两个部分,第一部分 base + refiner 是必须下载的,base 是基础模型,用于文生图操作;refiner 是精炼模型,用于对文生图生成的模型进行细化以生成细节更丰富的图片。此外,还有一个配套的 VAE 模型用于调节图片的画面效果和色彩。这三个模型可通过关注公众号【白马与少年】,回复【SDXL】获取云盘下载链接。 2. 版本升级:要在 webUI 中使用 SDXL 的大模型,需在秋叶启动器中将 webUI 的版本升级到 1.5 以上。 3. 放置模型:将 base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。 4. 启动使用:完成上述步骤后启动 webUI,即可在模型中看到 SDXL 的模型。正常使用时,先在文生图中使用 base 模型,填写提示词和常规参数(如尺寸设置为 10241024)进行生成。然后将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点再次点击生成。 5. 插件辅助:若觉得操作麻烦,可在扩展列表中搜索 refine 安装插件并重启,启用插件后可在文生图界面直接使用 refine 模型进行绘画。 另外,关于本地部署资讯问答机器人:Langchain + Ollama + RSSHub 实现 RAG,步骤包括导入依赖库(如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型)、从订阅源获取内容(通过指定函数从 RSS 订阅 url 提取内容,并将长文本拆分成较小的块附带相关元数据)、为文档内容生成向量(使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储),最终实现 RAG。
2025-04-13
我有秋叶整合包,然后需要怎么搭建本地部署?
以下是使用秋叶整合包搭建本地部署的步骤: 1. 下载整合包:可以从。 2. 复制启动器到下载仓库的目录下。 3. 打开启动器,可一键启动。如果有其他需求,可以在高级选项中调整配置。 显存优化根据显卡实际显存选择,不要超过当前显卡显存。xFormers 能极大地改善内存消耗和速度,建议开启。 4. 准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功。 如果报错提示缺少 Pytorch,则需要在启动器中点击配置。 5. Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新,同时注意插件的更新。 在 webui 的“扩展”选项卡下,可以安装插件。点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。安装完毕后,需要重新启动用户界面。 具体安装方法: 1. 打开整合包链接(https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,提取码:caru),下载《1.整合包安装》,存放到电脑本地。 2. 打开保存到电脑里的文件夹。 3. 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 4. 选择解压到 D 盘或者 E 盘(避免 C 盘被占满),点击确定。 5. 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 6. 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,选择桌面快捷方式,方便下次进入。 7. 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择。 8. 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等待 SD 的主界面在网页上自动弹出。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。
2025-04-12
如何部署自己私人AI
部署自己私人 AI 可以参考以下几种方式: 通过云服务器、dify、智能微秘书来免费搭建微信机器人: 1. 在宝塔面板的终端安装相关命令,这些命令位于/root/dify/docker 目录下。 2. 检查运行的容器数量,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 以解决。 3. 在浏览器地址栏输入公网 IP(去掉后面的:8888),进入后邮箱密码随便填,建立知识库并进行设置。 4. 选择模型,国内模型有免费额度可选,如智谱 ai,获取钥匙并复制保存,创建应用进行测试和发布。 基于 Hook 机制的微信 AI 机器人: 1. 将 Administrators 改成“wxid_dna83ykqawl222”。 2. 若有 FastGPT 或者 OpenAI 的 key,将 Ai_Lock 修改成“1”,并在 OpenAI 处添加模型 key;若没有,保持 Ai_Lock 为 0。 3. 修改后点击保存。 4. 返回 NGCbot 文件夹下,找到 main.py 文件双击运行。 5. 运行后会弹出微信登录框,正常登录微信,等待系统自动初始化必备文件。 6. 运行成功后,用“大号”给机器人发消息,拿到 wxid 并返回替换。 7. 添加完后,用小号登录,大号可对小号发号施令。 部署和训练自己的 AI 开源模型: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身资源、安全和性能需求选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,如开源的 BERT、GPT 等,也可自行训练基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,重视大模型涉及的大量数据和隐私信息的安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-04-11
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10