「AGIへの道」飛書ナレッジベースへ直行 →

最强的金融AI公司有哪些

回答

目前在金融 AI 领域表现较为突出的公司包括:

  1. Bloomberg:其 BloombergGPT 计划将 GPT 风格的 AI 集成到终端。
  2. ServiceNow:通过 AI 驱动的 Now Assist,实现了近 20%的事件避免率。
  3. Palo Alto Networks:利用 AI 降低了处理费用的成本。
  4. Hubspot:利用 AI 扩大了能够支持的用户规模。
  5. 瑞典金融科技公司 Klarna:通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。

此外,金融服务行业中,现有企业由于拥有对专有金融数据的访问权限,在使用 AI 推出新产品和改进运营时具有初始优势,但会受到对准确性和隐私的高标准限制;新进入者最初可能使用公开金融数据训练模型,而后逐渐生成自己的数据,并将 AI 作为新产品分销的突破口。

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

金融服务业将比你想象得更快地接纳生成式 AI

[title]金融服务业将比你想象得更快地接纳生成式AI原文地址:https://a16z.com/2023/04/19/financial-services-will-embrace-generative-ai-faster-than-you-think/原文作者:Angela Strange,Anish Acharya,Sumeet Singh,Alex Rampell,Marc Andrusko,Joe Schmidt,David Haber,Seema Amble发表时间:2023年4月19日译者:通往AGI之路,若有瑕疵之处,请在段落评论中斧正,谨此致谢人工智能和机器学习在金融服务行业的应用已经有十多年的历史,它们已经促成了从更好的信贷评估到更精确的基础欺诈评分等一系列的改进。大型语言模型(LLMs)通过生成式人工智能,代表着一次重大的飞跃,正在改变[教育](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)、[游戏](https://a16z.com/2022/11/17/the-generative-ai-revolution-in-games/)、[商业](https://a16z.com/2023/02/07/everyday-ai-consumer/)等多个领域。与传统的AI/ML主要侧重于基于现有数据进行预测或分类不同,生成式人工智能可以创造全新的内容。这种能力,结合了对大量非结构化数据的训练和实际上无限的计算能力,可能将带来金融服务市场数十年来最大的变革。与其他平台转变——如互联网、移动设备、云计算——不同,在这些转变中金融服务行业的采用速度较慢,在这里,我们预计最优秀的新公司和现有企业将立即开始接纳生成式人工智能。

红杉|AI 50 未来公司

[title]红杉|AI 50未来公司原文链接:https://www.sequoiacap.com/article/ai-50-2024/发表时间:2024-4-11作者:Konstantine Buhler编译:Z Potentials去年,生成式AI从不引人注意的地方走到了AI 50强榜单的前列。今年,随着我们看到企业用户和消费者的AI生产力开始大幅提高,它成为前沿和中心。尽管2023年美国的大部分AI风投都流向了基础设施领域——其中60%流向了最大的大语言模型(LLM)提供商,但应用公司仍在AI 50强榜单中占据主导地位。与此同时,我们开始看到AI如何为公司赋能。如今,许多公司正将AI融入其工作流程,以此来快速达成KPI。我们看到大公司正通过将AI融入其产品的方式而获益。工作流程自动化平台ServiceNow通过AI驱动的Now Assist,实现了近20%的事件避免率。Palo Alto Networks利用AI降低了处理费用的成本。Hubspot利用AI扩大了能够支持的用户规模。瑞典金融科技公司Klarna最近宣布,通过将AI融入用户支持,他们在运行率方面节省了4000多万美元。现在,成千上万的公司正在将AI整合到他们的工作流程中,以扩张规模和降低成本。AI 50强企业正在快速进化。不远的将来,我们有望看到UX和UI围绕AI的功能进行重新设计。在更好、更廉价地复制现有功能之后,我们将开发全新的用户界面,以提供有价值的新体验。

金融服务业将比你想象得更快地接纳生成式 AI

[title]金融服务业将比你想象得更快地接纳生成式AI金融服务公司拥有大量的历史金融数据;如果他们使用这些数据来微调大型语言模型(或者像[BloombergGPT](https://www.cnbc.com/2023/04/13/bloomberg-plans-to-integrate-gpt-style-ai-into-its-terminal.html)那样从零开始训练模型),他们将能够迅速地回答几乎任何金融问题。例如,一个经过公司客户聊天记录和一些额外产品规格数据训练的LLM,应该能够立即回答有关公司产品的所有问题,而一个经过公司十年可疑活动报告(SARs)训练的LLM,应该能够识别出一组表明存在洗钱计划的交易。我们相信金融服务行业已经准备好使用生成式人工智能来实现五个目标:个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理、以及动态的预测和报告。在[现有企业与初创公司之间的竞争](https://a16z.com/2015/11/05/distribution-v-innovation/)中,由于拥有对专有金融数据的访问权限,现有企业在使用AI推出新产品和改进运营时将拥有初始优势,但他们最终将受到对准确性和隐私的高标准的限制。另一方面,新进入者最初可能需要使用公开的金融数据来训练他们的模型,但他们将迅速开始生成自己的数据,并逐渐使用AI作为新产品分销的突破口。让我们深入了解这五个目标,看看现有企业和初创公司如何利用生成式AI。

他の質問
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
那三款AI写作能力最强
以下为目前写作能力较强的三款 AI 工具: 1. Muse:专门为小说创作训练的 AI 模型工具,可实现在线的小说续写修改、创意头脑风暴以及基于画布形式的故事创作,可免费试用。 2. GPT4:目前功能最强的人工智能写作工具,可以在 Bing(选择“创新模式”)上免费访问,或者通过购买 ChatGPT 的$20/月订阅来访问。 3. Claude 2:写作能力紧随 GPT4 之后,也提供了有限的免费选项。 此外,在广告文案写作方面,以下是排名靠前的几款工具: 1. Simplified:4 月访问量 483 万,相对 3 月变化 0.09。 2. klaviyo SMS Assistant:4 月访问量 471 万,相对 3 月变化 0.045。 3. KoalaWriter:4 月访问量 373 万,相对 3 月变化 6.919。
2025-03-28
短视频文案创作哪个AI能力最强
在短视频文案创作方面,以下几种 AI 能力表现较为突出: Kimi:作为国产大模型,在对中文的理解和写作能力上有一定优势。例如在修改文案使其更押韵方面能有不错的表现。 ChatGPT:能根据具体需求进行写作,作品有其特点。 美趣 AI:具有图片生成和写作生成的功能。 说得相机提词器:是一款写作软件。 AI 智能写作:原生的写作软件。 创客贴 AI:具备平面设计和文案生成的能力。 图趣 AI:原生的图片生成工具。 Molica AI:原生的图片生成工具。 文案宝:原生的个人助理,能进行 AI Bot 智能写作和识图。 此外,在一些挑战赛中,如 Show Me 扣子 AI 挑战赛大消费行业专场中,“营销文案创作专家深度版”能够为企业营销团队等提供从文案框架创作到生成的一站式服务,并进行营销数据分析。
2025-03-28
请推荐搜索功能最强的AI
以下是一些搜索功能较强的 AI 搜索引擎推荐: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式的搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,并支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 此外,腾讯元宝也是一款搜索功能出色的 AI 产品,它虽然推出较晚,但能凭借独特优势在市场站稳脚跟。其最大亮点是强大的 AI 搜索功能,最近更新了搜索体验,推出深度搜索等新功能,还能访问大量微信生态系统内的私域资源,包括微信公众号的内容以及腾讯内部、互联网上的其他优秀资源。同时,它依托腾讯“混元”大语言模型,能生成高质量内容,在深度搜索时能更全面、深入地回答用户问题,是 GPT Search 的良好替代选择,尤其适合需要访问中文内容和微信生态系统信息的用户。 Perplexity 更是被认为是 AI 搜索领域的“祖师爷”,早在 2022 年就已开始探索。其官网为 https://perplexity.ai/,Pro 会员每月 20 美元,成为 Pro 会员后可使用高级模型,并享受无限制的 Pro 搜索。在处理复杂问题时,其专业搜索模式表现出色。
2025-03-22
现在最强最新的文本模型是什么,如何免费使用
目前较为强大和新的文本模型包括: BERT:由谷歌推出,是“来自Transformer的双向编码器表示”的缩写。可在免费下载和使用。能用于文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户查询等多种自然语言处理任务。 GPT3:由 OpenAI 创建,生成真实文本的能力令人惊讶。 GPT4:OpenAI 目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra:Google 的多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus:Anthropic 的多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 “悟道・天鹰”:北京智源人工智能研究院推出,是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言:百度的大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 需要注意的是,免费使用这些模型可能存在一定限制,部分模型可能需要特定的条件或授权。同时,模型的性能和适用性也会因具体应用场景和需求而有所不同。
2025-03-15
目前最强的AI是哪家?
目前在 AI 领域,很难简单地确定哪家是最强的。Llama 3.1 是迄今为止最大版本,在推理、数学、多语言和长上下文任务中能与 GPT4 相抗衡,标志着开放模型缩小了与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现出色,解决了 30 题中的 25 题,接近人类国际数学奥林匹克金牌得主的表现。 在国内,由 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型在 LMSYS 排行榜上取得了优异成绩,尤其在数学和编程方面表现突出。智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型,还有“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。 需要注意的是,AI 领域发展迅速,各模型的优势和表现也会随时间变化。
2025-03-13
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
消费金融方面的场景应用
消费金融方面的场景应用包括以下几个方面: 1. 个性化的消费者体验:大语言模型(LLMs)能更好地理解和导航消费者的金融决策,回答诸如“为什么我的投资组合中有一部分在市政债券中?”“我应该如何看待期限风险与收益率?”等问题,并将人类背景纳入决策中,帮助消费者优化整个金融生活。 2. 风控和反欺诈:AI 可用于识别和阻止欺诈行为,降低金融机构的风险。 3. 信用评估:用于评估借款人的信用风险,协助金融机构做出更优的贷款决策。 4. 投资分析:分析市场数据,辅助投资者做出更明智的投资选择。 5. 客户服务:提供 24/7 的客户服务,回答常见问题。
2025-03-28
有没有关于金融交易的ai工具
以下是一些关于金融交易的 AI 工具: 1. Composer(免费可用):可以用 AI 构建、回测和执行交易算法,在无代码拖放编辑器中进行定制,无需编码技能。 2. 摩根大通公司的人工智能驱动模型:旨在破译央行的信息传递并发现潜在的交易信号。 3. Stripe Agent Toolkit:让 AI 代理具备自动支付等财务能力,支持嵌入支付和财务服务功能,AI 可以实现自动购物、订票、开票等金融交易。
2025-02-28
AI 在金融领域的应用与场景
AI 在金融领域有以下应用与场景: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 3. 投资分析:分析市场数据,帮助投资者做出更明智的投资选择。 4. 客户服务:提供 24/7 的服务,回答常见问题。 金融服务业接纳生成式 AI 可能带来重大变革。与传统 AI/ML 侧重于基于现有数据进行预测或分类不同,生成式 AI 能创造全新内容,结合对大量非结构化数据的训练和无限计算能力,有望成为金融服务市场数十年来最大的变革。 在金融投资领域,Coze bot 可发挥重要作用。金融分析师和投资者能通过它自动接收最新市场动态、股市新闻和财务报告,从多个金融资讯平台抓取数据并生成分析报告,推送到常用交流平台,实现实时跟踪市场动向、捕捉投资机会、自动生成财务报告和方便团队协作等效果。
2025-02-27
如何用AI建立金融模型
以下是关于如何用 AI 建立金融模型的相关内容: 金融服务公司拥有大量历史金融数据,可利用这些数据微调大型语言模型或从零开始训练模型,从而迅速回答各类金融问题。例如,经过特定数据训练的模型能回答产品相关问题或识别洗钱交易。金融服务行业准备借助生成式人工智能实现五个目标:个性化消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告。 在现有企业与初创公司的竞争中,现有企业因拥有专有金融数据访问权限在使用 AI 推出新产品和改进运营时有初始优势,但受准确性和隐私高标准限制;新进入者最初可能用公开金融数据训练模型,随后会生成自己的数据并以 AI 作为新产品分销突破口。 以摩根大通为例,其模型显示美联储鹰鸽派评分变化对加息可能性的影响。摩根大通通过与大学和国际合作培育生态系统,采用开源合作推动知识产权发展。政策制定者和主要国际机构可融合不同模型等投入制定预测,人工智能能处理大量数据集完善经济和货币预测,为政策决策提供信息。摩根大通已任命专人领导新的数据和分析部门,有众多数据管理人员、科学家和工程师专注于相关工作,人工智能已在多方面为公司增加巨大价值。 需要注意的是,生成式 AI 在金融领域的输出有局限性,尤其在需要判断或精确答案的领域,目前不能完全依赖其准确性,至少需要人工审查。新进入者和现有参与者在将生成式 AI 用于金融服务时面临两个主要挑战:一是使用金融数据训练模型,新进入者可能先使用公开数据再用自身收集的数据,现有参与者可利用专有数据但往往过于保守,新进入者可能有竞争优势;二是模型输出准确性,金融问题答案影响重大,不能产生错误,一开始人类常作为最终验证环节。生成式 AI 对金融服务公司是巨大变革,现有参与者和初创公司将争夺关键挑战的掌控权,最终受益的是未来金融服务的消费者。
2025-02-27
金融行业落地大模型的路径
以下是金融行业落地大模型的相关路径: 1. 从整体行业情况来看: 2024 年被称为国内大模型落地元年,国内大模型项目增长迅速,中标项目数量和金额大幅增长。 大模型中标项目数前五的行业包括金融。 厂商方面,百度在金融行业的中标数量和金额排名领先。 2. 具体应用案例: 彭博发布了金融领域的大模型 BloombergGPT,并应用于其所在的垂直领域。 3. 行业人士观点: 通用模型适用不同产业,垂直模型类似于单领域专家,垂直大模型的发展有助于提升各领域模型性能。 商汤科技联合创始人杨帆认为,当模型足够大时,可能加速商业化落地,带来更好的技术能力,缩短产业应用周期。 360 公司创始人周鸿祎表示,大模型是工业革命级的生产力工具,能赋能百行千业。 4. 相关赛事推动: 举办「2024 金融行业·大模型挑战赛」,整合公开金融数据,打造多轮问答评测赛题,提供基础数据表,参赛选手可采用 GLM4 系列模型 API 并运用多种技术手段完成赛题,有多个单位提供支持。
2025-02-24
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
runway的开发公司
Runway 是由一家总部位于旧金山的 AI 创业公司开发的。其在 2023 年初推出的 Gen2 代表了当前 AI 视频领域最前沿的模型。目前 Runway 支持在网页(https://runwayml.com/ )、iOS 访问,网页端目前支持 125 积分的免费试用额度(可生成约 105s 视频),iOS 则有 200 多,两端额度貌似并不同步。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
运用ai,生成每日自动推送到飞书消息的 公司文化日报,包含日历 天气 新闻 内部规划 事项
要运用 AI 生成每日自动推送到飞书消息的公司文化日报,包含日历、天气、新闻、内部规划和事项,您可以考虑以下步骤: 首先,需要确定获取日历、天气、新闻、内部规划和事项等信息的数据源。对于日历,可以使用在线日历服务的 API 来获取相关数据;天气信息可以从专业的气象数据提供商获取;新闻可以通过新闻聚合 API 或者与特定的新闻机构合作获取;内部规划和事项则需要从公司内部的管理系统或数据库中提取。 然后,选择适合的 AI 技术和工具。例如,可以使用自然语言处理技术来对获取到的数据进行处理和整合,生成易于阅读和理解的文本内容。 在生成日报的过程中,要注意格式的规范和统一,使其具有良好的可读性。同时,可以根据公司的文化特点和需求,对内容进行个性化的定制和优化。 另外,为了确保推送的准确性和及时性,需要建立有效的监控和反馈机制,及时发现并解决可能出现的问题。 希望以上建议对您有所帮助。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14