「AGIへの道」飛書ナレッジベースへ直行 →

我需要查找关于stable diffusion的教学

回答

以下是为您整理的关于 Stable Diffusion 的教学资源:

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

Stable Diffusion教程

[基本介绍](https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e)[稳定扩散(Stable Diffusion)是如何运作的](https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc)[heading3]入门看这里:[content][Stable Diffusion新人视频教程](https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe)文字教程:[Stable Diffusion超详细教程!从0-1入门到进阶](https://zhuanlan.zhihu.com/p/622238031)[heading2]模型网站:[content]|多行文本|标签|备注|附件|网址||-|-|-|-|-||C站-SD模型网站|模型|||[https://civitai.com/](https://civitai.com/)||Liblibai-模型+在线SD|模型|||[https://www.liblib.ai/](https://www.liblib.ai/)||huggingface||||[https://huggingface.co/models?pipeline_tag=text-to-image&sort=trending](https://huggingface.co/models?pipeline_tag=text-to-image&sort=trending)||吐司站|模型|||[https://tusiart.com/](https://tusiart.com/)|[heading2]推荐模型:[content]模型太多,以下是B站up主和设计师精选底膜,加上了标签,可以根据自己需求选择下载人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ

第一期:上班的你

[Nenly:Stable Diffusion零基础入门课学习资料汇总](https://waytoagi.feishu.cn/wiki/BrFcwz5MviFVxukw6Esc9w5PnIf)[工具教程:Stable Diffusion](https://waytoagi.feishu.cn/wiki/FUQAwxfH9iXqC9k02nYcDobonkf)[Stable Diffusion新人视频教程](https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe)[教程:视频教程](https://waytoagi.feishu.cn/wiki/KNFbwWnRJiWSgzksGu3cUDtjn8K)[SD入门教程](https://waytoagi.feishu.cn/wiki/PyZqwOe44i6YfekQ0C5ca8tPnKd)[工具:SD插件汇总](https://waytoagi.feishu.cn/wiki/XdL6wID2vigf82kUyXWcFWMFnDh)[工具:姿势参考图网站](https://waytoagi.feishu.cn/wiki/J4mFwcvzAid0zVkHVS4ccRtynfc)[教程:超详细的Stable Diffusion教程](https://waytoagi.feishu.cn/wiki/ZrpPwKPwji25KmkKVxmcT686nfh)[教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识-知乎](https://waytoagi.feishu.cn/wiki/KmLnwzgkLidzfykk2TMcw885nae)

SD绘画学社

[Nenly:Stable Diffusion零基础入门课学习资料汇总](https://waytoagi.feishu.cn/wiki/BrFcwz5MviFVxukw6Esc9w5PnIf)[工具教程:Stable Diffusion](https://waytoagi.feishu.cn/wiki/FUQAwxfH9iXqC9k02nYcDobonkf)[Stable Diffusion新人视频教程](https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe)[教程:视频教程](https://waytoagi.feishu.cn/wiki/KNFbwWnRJiWSgzksGu3cUDtjn8K)[SD入门教程](https://waytoagi.feishu.cn/wiki/PyZqwOe44i6YfekQ0C5ca8tPnKd)[工具:SD插件汇总](https://waytoagi.feishu.cn/wiki/XdL6wID2vigf82kUyXWcFWMFnDh)[工具:姿势参考图网站](https://waytoagi.feishu.cn/wiki/J4mFwcvzAid0zVkHVS4ccRtynfc)[教程:超详细的Stable Diffusion教程](https://waytoagi.feishu.cn/wiki/ZrpPwKPwji25KmkKVxmcT686nfh)[教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识-知乎](https://waytoagi.feishu.cn/wiki/KmLnwzgkLidzfykk2TMcw885nae)

他の質問
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
你是一个财务总监,市场分析师,但是你没有数据,现在需要你寻找一下有没有可以自动查找数据,并且根据数据生成饼状图的 AI工具
以下是为您推荐的可以自动查找数据并根据数据生成饼状图的 AI 工具: 1. Claude Financial Data Analyst:可视化金融数据分析工具,能生成多种图表,包括饼图。上传文档后可快速生成动态图表,适用于趋势分析和分布分析。详细介绍:https://xiaohu.ai/p/14811 ,GitHub:https://github.com/anthropics/anthropicquickstarts/tree/main/financialdataanalyst ,https://x.com/imxiaohu/status/1847617781594030583 。 2. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,会以自然语言、表格或者图表等形式进行回答,目前仅支持 GPT 模型,OpenAI API key 需自备。示例:pandas_ai.run 。GitHub 链接:https://github.com/gventuri/pandasai 。 3. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告的数据分析工具。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 。
2025-03-25
想咨询一下有没有可以自动查找数据,并且根据数据生成饼状图的 AI工具
以下是一些可以自动查找数据并根据数据生成饼状图的 AI 工具: 1. PandasAI:这是一个让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答,目前仅支持 GPT 模型,OpenAI API key 需自备。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:能够自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 此外,在一些特定的文档中还提到了通过代码生成和特定操作生成堆叠条形图、堆叠柱状图、百分比堆条形图等用于展示数据的方式。
2025-03-25
想咨询一下有没有可以自动查找数据生成饼状图的 AI工具
以下是一些可以自动查找数据生成饼状图的 AI 工具: 1. 对于一般的数据统计和图表生成,清华的智谱清言 Chatglm.cn 可能具备相关功能。 2. 在 CAD 领域,虽然主要是针对 CAD 图的生成,但也有一些工具可能适用于您的需求,例如: CADtools 12:这是一个 Adobe Illustrator(AI)插件,添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 Autodesk Fusion 360:是 Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,可根据用户输入的设计目标和约束条件自动产生多种设计方案。 需要注意的是,这些工具通常需要一定的相关知识和技能才能有效使用。对于初学者,建议先学习基本技巧,然后尝试使用这些工具来提高效率。同时,内容由 AI 大模型生成,请仔细甄别。
2025-03-25
有没有可以在网上查找小米销量数据并制作图表的ai工具?
以下是一些可以在网上查找小米销量数据并制作图表的 AI 工具: 1. Creately:这是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。它具有智能绘图功能,可以自动连接和排列图形,还有丰富的模板库和预定义形状,支持实时协作,官网:https://creately.com/ 2. Whimsical:这是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。它具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能,适合团队工作,官网:https://whimsical.com/ 3. Miro:这是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。它支持无缝协作,支持远程团队实时编辑,有丰富的图表模板和工具,还支持与其他项目管理工具(如 Jira、Trello)集成,官网:https://miro.com/ 使用这些 AI 工具绘制图表的一般步骤如下: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。
2025-03-10
有没有可以查找数据并制作图表的ai工具?
以下是一些可以查找数据并制作图表的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型的图表,包括逻辑视图和部署视图。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,在数据处理和报告撰写方面,您可以: 1. 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 2. 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 3. 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 4. 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但需注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。
2025-03-10
请以轨道式、巡检机器人为关键词查找国外文献十五篇,要求这些文献真实可靠并且有一定的影响力,同时附上原文链接
很抱歉,目前没有查找到以轨道式、巡检机器人为关键词的国外文献十五篇及原文链接。建议您通过以下途径进行查找: 1. 学术数据库,如 Web of Science、Scopus 等。 2. 相关领域的专业学术期刊网站。 3. 大学图书馆的电子资源库。
2025-03-06
ai视频教学
以下是为您提供的 AI 视频教学相关内容: 1. 第一节回放 AI 编程从入门到精通: 课程安排:19、20、22 和 28 号四天进行 AI 编程教学,周五晚上穿插 AI 视频教学。 视频预告:周五晚上邀请小龙问露露拆解爆火的 AI 视频制作,视频在视频号上有大量转发和播放。 编程工具 tree:整合多种模型,可免费无限量试用,下载需科学上网,Mac 可拖到文件夹安装,推荐注册 GitHub 账号用于代码存储和发布,主界面分为工具区、AI 干活区、右侧功能区等。 网络不稳定处理:网络不稳定时尝试更换节点。 项目克隆与文件夹:每个项目通过在本地新建文件夹来区分,项目运行一轮一轮进行,可新建会话,终端可重开。 GitHub 仓库创建:仓库相当于本地项目,可新建,新建后有地址,可通过多种方式上传。 Python 环境安装:为方便安装提供了安装包,安装时要选特定选项,安装后通过命令确认。 代码生成与修改:在 tree 中输入需求生成代码,可对生成的代码提出修改要求,如添加滑动条、雪花形状、颜色等,修改后审查并接受。 2. AI 视频提示词库: 神秘风 Arcane:Prompt:a robot is walking through a destroyed city,,League of Legends style,game modelling 乐高 Lego:Prompt:a robot is walking through a destroyed city,,lego movie style,bright colours,block building style 模糊背景 Blur Background:Prompt:a robot is walking through a destroyed city,,emphasis on foreground elements,sharp focus,soft background 宫崎骏 Ghibli:Prompt:a robot is walking through a destroyed city,,Spirited Away,Howl's Moving Castle,dreamy colour palette 蒸汽朋克 Steampunk:Prompt:a robot is walking through a destroyed city,,fantasy,gear decoration,brass metal robotics,3d game 印象派 Impressionism:Prompt:a robot is walking through a destroyed city,,big movements
2025-04-20
学的理论模型如何高效指导实践,在教学中
在教学中,关于如何让学习的理论模型高效指导实践,以下是相关内容: 本系列课程是由 Deeplearning 联合谷歌 Gemini 团队开发的免费在线课程,以 Gemini 模型作为教学模型,教授如何使用多模态提示词与模型交互。但课程内容在国内存在部分无法应用的情况,且缺乏某些概念。因此,对部分教程内容进行了重新整理和刊发,并适当混合了一些入门概念,以增强普世价值。(如有需要,请访问) 在本节课程中您可以学到: 通过实践,与视频内容交互,辅助工作与学习。 通过实践,学习 Function Calling 概念与实际应用。 扩展阅读: )
2025-04-13
有哪些最新的ai技术可用在课堂教学上
以下是一些可应用在课堂教学上的最新 AI 技术: 1. 智慧技术助理:为教师提供辅助,帮助教师在课前、课中、课后呈现新的教学样态,驱动学生高效和差异化学习。 2. 生成式人工智能:可用于为教师减负,例如辅助设计教学内容、生成提示词等。 3. 个性化学习支持:通过 AI 技术实现对学生的个性化学习支持,如智能评估学生的学习情况,为每个学生提供定制化的学习方案。 4. 教育过程和结果的结构化表征:利用 AI 进行分析,帮助教师更好地了解学生的学习过程和结果。 5. 多维度数据采集与评价:AI 可以整合行为、情感、认知等多维度数据,为学生绘制发展全景图,实现更全面的教育评价。 需要注意的是,AI 在教育中是“助手”而非“替代”,教师应充分利用这些成熟的技术促进教育变革。
2025-04-13
自媒体文章创作提示词教学
以下是关于自媒体文章创作提示词教学的相关内容: 一、宝玉日报中的提示词教学 1. 提示词四要素包括指令、上下文、输出格式、角色。明确表达需求,学会结构化 Prompt,能让 AI 效果立竿见影。 2. 相关链接: 二、工具教程:清影中的提示词优化原则 1. 强调关键信息:在提示的不同部分重复或强化关键词有助于提高输出的一致性。 2. 聚焦出现内容:尽量让提示集中在场景中应该出现的内容上。 3. 规避负面效果:在提示词中写明不需要的效果,保障视频生成质量。 写提示词的步骤: 1. 明确场景中的人物和冲突,这是推动场景发展的关键因素。 2. 对场景进行详细描述,包括地点、人物形象、任务动作等细节,使用生动的动词营造动态和戏剧化氛围。 3. 加强镜头语言,常用的镜头运动包括推、拉、摇、移、升、降等,每种镜头运动都有其特定作用和效果。 三、关于律师如何写好提示词用好 AI 1. 第一部分:说清楚本文要解决的问题、问题的背景以及可能导致的损失。 2. 第二部分:以案例引入,案例需改写自【基础材料】的【类案参考】部分,包括案号、案件事实经过、法院裁判结果、关键依据等与文章有关的要点。 3. 第三部分:对案例进行进一步分析,写明需要注意的关键点,分析可改写自【基础材料】的【问答结果及分析】部分,这部分不要给建议。 4. 第四部分:给出具体的操作建议,分为事前应注意事项、事中需要注意留存的证据、事后可以采取的补救措施三个部分,每个部分分别给出三条清晰具体的建议。 5. 第五部分:结语及对于本文作者的宣传。 文章结构要点: 1. 定义身份(边界),整体流程和所需资源描述。 2. 对所需资源及如何使用进行描述。 3. 对最终输出的结果进行描述。 注意事项: 1. 所有结论均应有相对应的案例基础,不能违反法律规定,不能编造。 2. 文字需要简练精准,有足够的信息密度,给出的建议必需具体细致且易于操作。
2025-04-12
AI办公相关的课程、软件教学
以下是为您提供的 AI 办公相关的课程和软件教学资源: 1. 90 分钟从 0 开始打造您的第一个 Coze 应用: 课程包含从零开始的应用界面教学,涉及过年相关应用。 介绍了当前承接的业务,包括辅导、培训、定制及企业 AI 落地等。 提到 11 月底应用推出背后的情况,包括社区对 AI 应用的呼声和功能需求挖掘。 2. AI 视频的软件教程: 涵盖了众多工具,如剪映、Dreamina、Pika、StableVideo、Pixverse、morphstudio、Runway Gen3、Adobe Firefly 以及清影等。 3. 张翼然:用 AI 为教师减负(3H).pdf: 包括教师的 AI 减负指南,生成式人工智能在教学中的应用。 介绍了教师使用 AI 的小技巧,如提示词设计公式之——RTFC。 涉及使用 AI 生成图片的方法与注意事项,AI 自动生成 PPT 功能。 展示了通过小程序实现文字与声音、视频的转化,自定义数字人形象进行教学。 展示了便捷的课堂教学工具与 Ai 课件制作,探讨了 A 生成视频与手工制作视频的教学效果差异。 强调了教育资源与版权问题,教师能力重塑,极简思维的教育应用,生成式 AI 教学策略。 包括 AI 技术助力教育管理和辅助教学实践,如班级与学校管理中的行政职日流程简化、听课记录自动化等。
2025-04-12
ai在教学中的最新应用
以下是 AI 在教学中的一些最新应用: 1. MIT 为孩子开设免费的 AI 课程,涵盖了 AI 在跨学科领域的应用,如 AI 与气候、AI 与大学录取、AI 对美国大选的影响等。孩子们需要思考如何用气候数据写好故事、预测气候变换走向,从数据分析角度了解大学录取中的相关问题,以及识别 AI 深度伪造的新媒体材料等。 2. 张翼然提出用 AI 为教师减负,为有初步 AI 使用经验、渴望了解最新技术进展并交流的老师提供了相关技巧和分享。例如,在智慧技术助理加持下探索教学新样态,分享全球 AI 技术在教育界的新发展和应用案例。 3. 从 AI 助教到智慧学伴的应用探索中,提出调整教学理念,将 AI 作为教学辅助工具和合作伙伴。学习利用 AI 工具的优势应用于教学,如自动生成练习、个性化反馈等,同时确认输出质量。根据 AI 能力设计开放性作业,调整考核方式,继续发挥教师在提供情感支持、培养团队合作等方面的优势。
2025-04-11