「AGIへの道」飛書ナレッジベースへ直行 →

清华AI幻觉

回答

以下是关于清华 AI 幻觉的相关信息:

在 AI 领域,特别是大型语言模型(LLM)中,幻觉是一个常见的问题。LLM 会产生幻觉,编造事实性信息,原因在于它们本质上是在模仿训练数据中的统计模式,而非真正理解或检索知识。例如,模型在训练数据中学习到“who is X”类型的问题通常有确定的答案,所以即使面对未知问题,也会倾向于编造答案以符合训练数据的风格。

对于幻觉问题,有一些研究和应对方法。牛津大学的研究重点关注了幻觉的一个分支——虚构症,通过生成一个问题的多个答案,并使用另一个模型根据相似含义分组来衡量 LLM 不确定性。Google DeepMind 推出了 SAFE,通过将 LLM 响应分解为单个事实、使用搜索引擎验证事实以及对语义相似的陈述进行聚类来评估 LLM 响应的真实性。同时,OpenAI 推出了 CriticGPT,它使用基于大量有缺陷输入数据集进行训练的 GPT 式 LLM 来发现其他 LLM 生成的代码中的错误。

此外,清华大学在这方面也有相关研究,如“DeepSeek 与 AI 幻觉”。但关于其具体内容,您可以通过相关链接进一步了解。

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

AI 大神Karpathy再发LLM入门介绍视频,入门必看!

幻觉(Hallucination)(01:20:32-01:24:45):LLM会产生幻觉,编造事实性信息,因为它们本质上是在模仿训练数据中的统计模式,而不是真正理解或检索知识。知识边界检测(01:25:49-01:26:51):通过提问和评估模型回答的一致性,判断模型是否了解某个事实。拒绝回答机制(01:30:41-01:31:38):对于模型不确定的问题,训练模型学会拒绝回答,或者声明“I don't know”。工具使用(Web Search)(01:31:38-01:35:47):允许模型使用外部工具(如网络搜索)检索信息,从而获取更准确和最新的知识。幻觉的根源(01:22:10-01:24:00):模型在训练数据中学习到“who is X”类型的问题通常有确定的答案,因此即使面对未知问题,也会倾向于编造答案以符合训练数据的风格。缓解幻觉的方法(01:24:45-01:31:38):知识的本质(01:49:42-01:50:33):LLM的知识存储在网络参数中,是对互联网信息的“模糊回忆”,而非精确记忆。这种知识是统计性的、概率性的,而非精确和可靠的。自我认知(Knowledge of Self)(01:41:42-01:45:42):LLM本身没有持久的自我意识,对自身模型的描述(例如“我是OpenAI GPT-3模型”)是基于训练数据的幻觉,而非真实的自我认知。可以通过硬编码或系统消息来引导模型进行自我描述。

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

LLM存在两个主要的可靠性错误:与其内部知识不一致的反应(幻觉)以及分享与既定的外部知识不一致的信息。牛津大学最近发表的一篇论文重点研究了幻觉的一个分支,即虚构症,其中LLM产生了不正确的概括。他们通过生成一个问题的多个答案,并使用另一个模型根据相似的含义将它们分组来衡量LLM不确定性。各组之间的熵值越高,则表明存在虚构行为。同时,Google DeepMind推出了SAFE,它通过将LLM响应分解为单个事实、使用搜索引擎验证事实以及对语义相似的陈述进行聚类来评估LLM响应的真实性。他们还策划了LongFact,这是一个用于评估38个主题的长篇教员的新基准数据集。LLM生成的批评是否可以提高准确性和一致性?“法学硕士作为评判者”的概念依然存在,各大实验室已将其扩展到简单的产出评估之外。OpenAI推出了CriticGPT,它使用基于大量有缺陷输入数据集进行训练的GPT式LLM来发现其他LLM生成的代码中的错误。它在发现错误方面的表现优于现实承包商公司,并且在63%的时间里,其评论比人类撰写的评论更受欢迎。该系统还能够发现被标记为“完美无缺”的训练数据中的错误。同时,Cohere还探索了使用LLM生成的评论可增强RLHF的奖励模型。他们使用一系列LLM为每个偏好数据对生成逐点评论,旨在让LLM评估提示完成对的有效性。他们发现,在较弱的基础模型中,或在低数据设置中,一个高质量的批评增强偏好对可以抵得上40个标准偏好对。RLHF不会很快消失

详解:DeepSeek深度推理+联网搜索 目前断档第一

|[heading2]名称|[heading2]链接|[heading2]团队简介|[heading2]类型|[content]|-|-|-|-||[heading6]DeepSeek与AI幻觉|[5️⃣DeepSeek与AI幻觉「清华大学」](https://bl7rsz9526.feishu.cn/wiki/Q4oHwS9qrigJIjk6UK4cGLf2nwf)|清华大学新闻与传播学院<br>新媒体研究中心人工智能学院<br>双聘教授@新媒沈阳团队<br>博士后张家铖|PPT课件|[content]|[heading6]证券机构文档|[content][AI大模型的突破与未来展望](https://bl7rsz9526.feishu.cn/wiki/MXHVwGwVciCRZykfeV0c8203nte)|国信证卷、华安证卷、中航证券、东兴证卷、浦银国际、开源证券...|PDF文档|

他の質問
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
AI幻觉是什么?
AI 幻觉是指 AI 系统生成的信息与事实不符或与预期不符的现象。具体表现为: 生成的输出内容看似合理流畅,但实际上与输入信息、上下文环境或客观事实相矛盾,缺乏逻辑或经验支撑。 表现形式多种多样,例如在艺术创作中照片中突然出现第三只手臂。 AI 幻觉存在潜藏的风险: 误导用户,导致用户获取错误信息从而做出错误判断,如医疗 AI 助手给出错误诊断建议可能延误患者治疗。 传播虚假信息,用于制造和传播虚假新闻报道或社交媒体帖子,误导公众,影响社会稳定。 损害 AI 系统的可信度,降低用户对 AI 系统的信任度,阻碍 AI 技术推广和应用。 为了避免 AI 幻觉,需要对其生成的内容进行检查,因为即使是像 GPT4 这样相对扎实的模型或有互联网连接的 Bing 也不能完全消除幻觉。同时要注意人工智能不会真正解释自己,给出的解释可能是编造的,使用时要对其输出负责,防止被不道德地用来操纵或作弊。
2025-03-21
ai幻觉
AI 幻觉是指 AI 在生成内容时出现的错误或与现实世界不符的情况。以下是关于 AI 幻觉的一些重要方面: 在写东西方面: AI 容易“产生幻觉”并生成看似合理但可能完全错误的内容,需要对其生成的所有内容进行检查。 对于要求提供参考、引用、引文和信息(对于未连接到互联网的模型)的情况尤其危险。 AI 不会真正解释自己,对其思考过程的回答可能是完全编造的。 使用 AI 工具的输出需要承担责任。 在艺术创作方面: 许多 AI 工具会出现幻觉,如照片中突然出现第三只手臂,或者处理请求时间长。 对于试图通过内容实现盈利的用户可能更加令人沮丧。 从技术真相与应对策略角度: 本质:AI 幻觉是模型对训练数据中统计模式的过度依赖,导致无法准确理解和生成新情况的信息,从而输出与现实不符的内容,类似于人类认知偏差中大脑为节省认知资源对信息的扭曲。 表现形式:多种多样且难以察觉,如生成不存在的人物、地点、事件,或对已知事实错误描述;类似于人类的确认偏误、可得性偏差、锚定效应等。 产生原因:都与经验和知识有关,人类受个人成长经历、文化背景、知识结构等影响,而 AI 与训练数据质量、模型结构和训练策略有关,若训练数据有偏差或错误,模型会学习并体现在生成内容中。 影响:可能导致错误决策,如人类在生活中做出错误判断和选择,投资者受可得性偏差影响做出错误投资决策;AI 幻觉可能误导用户、传播虚假信息,甚至在医疗诊断等领域引发安全事故。 目前还没有完全消除 AI 幻觉的方法,但可以通过一些措施来降低其影响。
2025-03-19
ai的幻觉问题
AI 的幻觉问题主要体现在以下几个方面: 1. 可能编造不存在的 API 或错误代码,需要人工严格审查。 2. 在处理复杂项目时,难以设计架构和模块化,难以完全掌握项目需求,也难以独立完成编译、部署、调试等复杂任务。 3. 许多 AI 工具在艺术创作中会出现幻觉,例如照片中突然出现第三只手臂,或者处理请求时间过长。 4. 当用户追问时,AI 可能会钻牛角尖,给出越来越离谱的答复,还可能不懂装懂,提供错误知识。 针对模型幻觉问题,一些解决技巧包括: 1. 新建一个会话窗口重新提问。 2. 告诉 AI 忘掉之前的所有内容,重新交流。 3. 让 AI 退一步,重新审视整个结构,从零开始设计。 4. 当 AI 猜测并修改问题时,可提供日志让其依据判断问题所在。
2025-03-19
消除大模型幻觉的方法
以下是关于消除大模型幻觉的方法的相关内容: 大模型出现幻觉的原因及部分解决办法: 1. 原因: 样本存在错误(Imitative Falsehoods),即学习的“教材”中有错误。 2. 解决办法: 上采样(Up Sampling)。 大模型存在的问题: 1. 输出结果具有不可预测性。 2. 静态的训练数据导致知识存在截止日期,无法即时掌握最新信息。 知识的局限性:模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:基于数学概率的文字预测导致会在没有答案的情况下提供虚假信息等。 数据安全性:企业担心数据泄露,不愿将私域数据上传第三方平台训练。 Prompt 可以减少幻觉的原因: Prompt 相当于给大模型提供了一个模板,包括对模型的要求、输入和输出的限制,使大模型在限制下得到概率最大的答案,从而提升返回的准确性。 RAG 是解决大模型问题的有效方案: RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解 LLM 如何生成最终的结果。RAG 可与微调结合使用,两者并不冲突。但 RAG 不适合教模型理解广泛领域或学习新语言、格式或样式。
2025-03-17
如何避免ai的幻觉
要避免 AI 的幻觉,可以从以下几个方面入手: 1. 提示词工程: 明确要求 AI 引用可靠来源,例如在询问历史事件时要求引用权威的历史文献,询问科学事实时要求引用已发表的科研论文,询问法律条款时要求引用官方的法律文件。 要求 AI 提供详细的推理过程,例如在询问数学公式时要求展示推导过程,询问代码功能时要求逐行解释代码的含义。 明确限制 AI 的生成范围,例如在询问名人名言时指定名人的姓名和相关主题,询问新闻事件时指定事件的时间范围和相关关键词。 2. 数据方面: 数据清洗:利用各种技术手段对 AI 的训练数据进行“清洗”,去除错误信息、补充缺失数据、修正不一致的内容,并尽可能消除数据中的偏见。 数据增强:为 AI 模型提供更多、更丰富的训练数据,例如在训练图像识别模型时,对已有的图像进行旋转、缩放、裁剪等操作,生成更多新的样本,从而提高模型的泛化能力。 3. 从伦理和社会角度: 制定 AI 伦理规范:需要制定明确的 AI 伦理规范,引导 AI 技术的研发和应用,确保 AI 系统符合人类的价值观和道德准则,避免 AI 被用于危害人类利益的行为。 加强 AI 监管:加强对 AI 系统的监管,建立完善的评估机制,及时发现和纠正 AI 系统中的错误和偏差,防止 AI 幻觉造成严重后果。 提升公众的 AI 素养:提升公众的 AI 素养,让人们了解 AI 技术的原理和局限性,理性地看待 AI 幻觉问题,避免被 AI 误导。 需要注意的是,提示词工程只是一种辅助手段,要从根本上解决 AI 幻觉问题,还需要从数据、模型、训练方法等多个方面进行努力。同时,AI 幻觉既有负面影响,也可能带来正面价值,我们既要警惕其风险,也要善于利用其带来的机遇。
2025-03-07
我是经济学研究者,经常写作学术论文,投稿SSCI期刊,大模型幻觉太严重,在辅助文献综述写作方面,基本没有用处。你有好的用于文献综述写作的AI辅助工具吗?
以下是一些可能有助于您在文献综述写作中应对大模型幻觉问题的方法和工具: 1. 对于 ChatGPT ,您可以使用 temporary chat 功能,保证其在没有任何记忆的情况下生成最新鲜的回答。 2. 当发现模型回答不理想时,可以采取以下技巧: 告诉模型忘掉之前的所有内容,重新提问或新建会话窗口。 让模型退一步,重新审视整个结构,从零开始设计。 对于像 Claude 这种会自己猜测的模型,如果不确定,可以给它看日志,让其依据日志判断问题所在。 3. 您可以参考 Hallucination Leaderboard (大语言模型幻觉排行榜),了解不同模型的幻觉情况,该排行榜使用 Vectara 的 Hughes 幻觉评估模型计算各大模型在总结文档时引入幻觉的频率,用于评估 LLM 的事实一致性,并为 RAG 系统提供参考。完整榜单可通过查看。 4. Claude APP 即将添加网页搜索和推理功能,这或许意味着新模型即将发布,预计发布时间在一两周内。
2025-03-06
给我提供一份清华大学104页的deepseek从入门到精通的手册的链接
以下是为您找到的与清华大学 DeepSeek 相关的一些资料链接: https://pan.quark.cn/s/56e2713e95f4 https://docs.qq.com/doc/DSG9SWFpjVXI3aHZ1 清华大学 104 页的 DeepSeek 从入门到精通的手册:https://waytoagi.feishu.cn/record/FjWorH (2 月 11 日更新附录)
2025-04-11
给我提供一份清华大学104页的deepseek从入门到精通的手册
以下是为您整合的相关信息: 清华大学出品了《DeepSeek:从入门到精通》的指南,该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了其使用方法,包括推理模型与通用模型的区别、提示语设计策略等,旨在帮助用户更好地掌握这一 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接获取:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg 。 此外,还有一些相关的更新和资料,如 2 月 11 日更新附录的清华大学 104 页 Deepseek 从入门到精通、1 月 21 日更新热门 AI deepseek 推荐及案例征稿通知、1 月 14 日更新爱好者交流 g 群和微信群、12 月 30 日更新案例 24,25,26 等。 同时还有关于 AI 赋能教学的课程实施流程及案例亮点等内容,如利用 AI 生成开放性问题引发深度思考、通过多维数据分析支持全面客观的判断、通过辩论提升批判性思维和表达能力等。
2025-04-11
北大清华伯克利等知名高校最新AI研究成果
以下是北大清华伯克利等知名高校的最新 AI 研究成果: 国内方面: 清华大学的自然语言处理实验室资助了 OpenBMB 项目,催生了 MiniCPM 项目,这是可以在设备上运行的小型<2.5B 参数模型,其 2.8B 视觉模型在某些指标上仅略低于 GPT4V。 阿里巴巴最近发布了 Qwen2 系列,社区对其视觉能力印象深刻,能完成从具有挑战性的 OCR 任务到分析复杂的艺术作品等。 国外方面: Stability AI 发布的 Stable Video Diffusion 是第一个能够从文本提示生成高质量、真实视频的模型之一,并且在定制化方面取得了显著的进步。今年 3 月,他们推出了 Stable Video 3D,该模型经过第三个对象数据集的微调,可以预测三维轨道。 OpenAI 的 Sora 能够生成长达一分钟的视频,同时保持三维一致性、物体持久性和高分辨率。它使用时空补丁,类似于在变压器模型中使用的令牌,但用于视觉内容,以高效地从大量视频数据集中学习。此外,Sora 还使用了其原始大小和纵横比的视觉数据进行训练,从而消除了通常会降低质量的裁剪和缩放。 Google DeepMind 的 Veo 将文本和可选图像提示与嘈杂压缩视频输入相结合,通过编码器和潜在扩散模型处理它们,以创建独特的压缩视频表示。然后系统将此表示解码为最终的高分辨率视频。 此外,Geoffrey Hinton 让“深度学习”从边缘课题变成 Google 等网络巨头仰赖的核心技术。Hinton 和他的团队让 CIFAR 获得丰厚回报,深度学习也成为目前的主流。Hinton 冷静、谦逊与公平的态度为 NCAP 建立了良好的开放合作氛围,推进了世界的 AI 研究工作。 关于未来研究方向的参考资料包括: 人工智能技术与安全研究:DeepMind、OpenAI、MIT、Stanford、Berkeley 等机构的论文,“AI Index”(斯坦福大学发布)、OpenAI 技术博客、Google AI Blog 等技术报告,专家著作如 Nick Bostrom《Superintelligence》、Stuart Russell《Human Compatible》等。 经济与社会变迁:IMF、世界银行、OECD、WEF(世界经济论坛)的未来就业与技术报告,未来学与社会预测如 Herman Kahn、Ray Kurzweil《The Singularity is Near》等,科技史与社会影响方面如 Joseph Schumpeter(创新与经济周期)、Carlota Perez(技术革命与金融资本),以及经济学者对产业革命的历史演化研究。 政治与国际关系:联合国关于 AI 和数字治理的政策文件、欧盟 AI Act 的立法草案与相关研究,前沿智库与研究中心如 Future of Humanity Institute、Brookings、RAND Corporation 等,军事与国防方面如美国国防部和 NATO 对 AI 的战略规划,中国、欧盟、日本等国家的 AI 国家政策及军民融合案例。
2025-03-24
deepseek清华大学公开课
以下是关于清华大学与 DeepSeek 相关的公开课信息: 2 月 7 日,清华大学新闻与传播学院新媒体研究中心出品了《》,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 2 月 18 日,清华大学沈少阳发布了《》
2025-03-09
deepseek教程 清华大学
以下是关于 DeepSeek 教程的相关信息: 清华大学新闻与传播学院新媒体研究中心出品了《》,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 全球数据资产理事会发布了《》。 还有《》。
2025-03-07
清华大学 deepseek从入门到精通
《DeepSeek:从入门到精通》是清华大学新闻与传播学院新媒体研究中心出品的指南。该指南详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等。同时探讨了如何使用 DeepSeek,涵盖推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 此外,还有其他与 DeepSeek 相关的动态,如清华大学沈少阳的《DeepSeek+DeepResearch 应用报告》,以及来自不同机构的相关研究报告,如智灵动力的《DeepSeek 行业应用实践报告》、厦门大学的《2025 年大模型概念、技术与应用实践》、国海证券的《人工智能系列深度:DeepSeek 十大关键问题解读》、全球数据资产理事会的《DeepSeek 使用教程蓝皮书从入门到进阶完整指南》、北航&清华大学的《DeepSeek+DeepResearch——让科研像聊天一样简单》、中泰证券的《DeepSeek 将如何改变 AI 应用?》。
2025-03-05