Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何安装Kimi Copilot插件

Answer

Kimi Copilot 插件是一款浏览器扩展,它可以帮助用户在浏览网页时快速总结文章内容。以下是该插件的安装方法:

  1. 打开 Chrome 网上应用店,搜索 Kimi Copilot - 网页总结助手或 Kimi 阅读助手,点击安装按钮进行安装。
  2. 安装完成后,在浏览器中登录自己的 Kimi 账号,并关联网页版 Kimi。
  3. 打开需要总结的网页,点击 Kimi Copilot 插件图标,或使用快捷键 Ctrl/Cmd+Shift+K,即可一键召唤 Kimi 总结网页内容。

注意:本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品。由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。

Content generated by AI large model, please carefully verify (powered by aily)

References

熊猫大侠:Kimi Copilot - 搜罗精华,一键高效网页总结

文末的ZIP格式插件应该可以自定义提示词,大佬们自己探索吧~~插件介绍:概述:安装后,在浏览网络文章时点击插件图标,或使用快捷键Ctrl/Cmd+Shift+K,即可一键召唤Kimi总结网页内容特点:1.极简,点击一键总结,没有其它花里胡哨的功能2.Kimi无法访问的网页也可以进行总结,如推特等3.英文文章直接用中文总结要点4.支持Dark Mode注意:1.本插件为第三方爱好者开发,不是Kimi或月之暗面官方产品2.由于Arc等浏览器没有所需的API,所以本插件在Arc等浏览器无法使用

熊猫大侠:Kimi Copilot - 搜罗精华,一键高效网页总结

文末的ZIP格式插件应该可以自定义提示词,大佬们自己探索吧~~插件介绍:概述:安装后,在浏览网络文章时点击插件图标,或使用快捷键Ctrl/Cmd+Shift+K,即可一键召唤Kimi总结网页内容特点:1.极简,点击一键总结,没有其它花里胡哨的功能2.Kimi无法访问的网页也可以进行总结,如推特等3.英文文章直接用中文总结要点4.支持Dark Mode注意:1.本插件为第三方爱好者开发,不是Kimi或月之暗面官方产品2.由于Arc等浏览器没有所需的API,所以本插件在Arc等浏览器无法使用

熊猫大侠:Kimi Copilot - 搜罗精华,一键高效网页总结

推荐两个实用浏览器插件:[Google应用商店](https://chromewebstore.google.com/)的[Kimi Copilot -网页总结助手](https://chromewebstore.google.com/detail/kimi-copilot-%E7%BD%91%E9%A1%B5%E6%80%BB%E7%BB%93%E5%8A%A9%E6%89%8B/icmdpfpmbfijfllafmfogmdabhijlehn)和[Kimi阅读助手](https://chromewebstore.google.com/detail/kimi-%E9%98%85%E8%AF%BB%E5%8A%A9%E6%89%8B/iejcbdponpipehjlchccknbmnkonnmji)(不方便下载的,文末附下载链接)需要在浏览器中登录自己的Kimi账号,关联网页版,好用到起飞。1、Kimi Copilot -网页总结助手去网页版查看了下Kimi的历史对话记录,可以看到该插件提示词分了3部分

Others are asking
trae 推荐安装那个版本的 vscode插件
在 Trae 中安装 VS Code 插件可以通过以下方式: 1. 从 Trae 的插件市场安装: 在左侧导航栏中,点击插件市场图标,界面左侧显示插件市场面板。 搜索您想要的插件并在未安装列表中将其选中,界面上显示该插件的详情窗口,展示该插件的详细说明、变更日志等信息。 点击安装,Trae 开始安装该插件。安装完成后,该插件会出现在已安装列表中。 2. 从 VS Code 的插件市场安装: 前往。 搜索您想要的插件,例如:Pylance。 在搜索结果中,点击您所需的插件,您会前往该插件的详情页。 在详情页中,点击 Version History。 结合插件页的 URL 和 Version History 中的信息,提取出以下信息(以 Pylance 为例): itemName:URL Query 中的 itemName 字段,如截图中的 mspython.vscodepylance,并将小数点(.)前后的内容分成以下两个字段: fieldA:mspython fieldB:vscodepylance version:如截图中的 2025.1.102 使用提取出来的 3 个字段的值替换下方 URL 中的同名字段。 在浏览器中输入修改后的 URL,然后按下回车键,浏览器开始下载该插件。 下载完成后,返回 Trae 并打开插件市场。 将下载的.vsix 文件拖拽至插件市场面板中,Trae 开始自动安装该插件。安装完成后,该插件会出现在已安装列表中。 此外,如果 VS Code 插件市场中某个版本的插件依赖了新版 VS Code 中的某些接口,则可能会导致该插件与 Trae 不兼容。您可以查看该插件的 Version History,然后下载该插件的历史版本。 管理插件还包括禁用插件和卸载插件: 1. 禁用插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需禁用的插件。 鼠标悬浮至列表中的插件,然后点击设置>禁用。或点击该插件以打开其详情窗口,然后点击禁用。 2. 卸载插件: 在 Trae 中,打开插件市场。 在已安装列表中,找到需卸载的插件。 鼠标悬浮至该插件,然后点击卸载。或点击该插件以打开其详情窗口,然后点击卸载。
2025-04-19
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
找一下翻译插件
以下为您介绍一些翻译插件和方法: 1. 提示词翻译副本 Alekpet: 插件地址:安装后重启 ComfyUI 即可。 将 CLIP 文本编码器转换为输入,连接翻译文本节点即可使用。 链接:https://github.com/kingzcheung/ComfyUI_kkTranslator_nodes 2. 提示词翻译副本 Prompt_Translate_to_English: 用的百度翻译 API 方法如下: 下载节点压缩包,并将它放在 custom_nodes 文件夹。 去百度翻译 Api 和登记册开发人员的帐户中得到您的 appid 和 secretKey。 百度翻译平台地址:https://fanyiapi.baidu.com/manage/developer 。 打开文件 config.py 在记事本/其他编辑,填您的 secretKey 在引号的 secretKey ="",保存文件重启 Comfy 即可。 3. 翻译一份英文 PDF 完整地翻译成中文的方法: DeepL(网站): 点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 沉浸式翻译(浏览器插件): 安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 calibre(电子书管理应用): 下载并安装 calibre,并安装翻译插件「Ebook Translator」。 谷歌翻译(网页): 使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 百度翻译(网页): 点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、PDF、Word、Excel、PPT、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。
2025-04-08
ai和office软件结合的插件有哪些
以下是一些 AI 和 Office 软件结合的插件: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,能通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Office 软件中,进一步提高工作效率和智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-01
coze上提取视频文案的插件有哪些?都是怎么调用的
以下是关于在 coze 上提取视频文案的插件及调用方法: 1. 进入 coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 2. 在插件的 URL 部分,填入通过 ngrok 随机生成的 https 的链接地址。 3. 配置输出参数和 message 输出。 4. 测试后发布插件。 需要注意的是: 1. 如果在生产环境中已有准备好的 https 的 api,可直接接入。 2. 本案例中使用的是 coze 国内版,且案例中的 ngrok 仅供娱乐,在生产环境中勿用。
2025-04-01
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
如何登录KIMI
要登录 Kimi,您可以参考以下步骤: 1. 推荐两个实用的浏览器插件:在(不方便下载的,文末附下载链接)。 2. 在浏览器中登录自己的 Kimi 账号,关联网页版。 安装相关插件的特点和注意事项: 1. Kimi Copilot网页总结助手: 特点:极简,点击一键总结,没有其它花里胡哨的功能;Kimi 无法访问的网页也可以进行总结,如推特等;英文文章直接用中文总结要点;支持 Dark Mode。 注意:本插件为第三方爱好者开发,不是 Kimi 或月之暗面官方产品;由于 Arc 等浏览器没有所需的 API,所以本插件在 Arc 等浏览器无法使用。 2. Kimi 阅读助手: 特点:用更简单的方式使用 Kimi。 注意:需要 Chrome 114 及以上版本才能正常使用扩展;暂不支持 Arc 游览器(Arc 缺少相关 API)。 在 Obsidian 中使用 Kimi 的步骤: 1. 用命令面板打开刚才创建的页面,默认快捷键 Ctrl+P 。 2. 在弹出的搜索框中输入插件名称:custom frames 。 3. 在下拉选项中选择 OpenKimi 。 4. 打开刚才设置好的 Kimi 窗口。 以上是关于登录 Kimi 以及相关插件和使用的信息。
2025-03-14
如何在Kimi创建我的个人知识库
以下是在 Kimi 创建个人知识库的相关信息: 使用 GPT 打造个人知识库: 由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 将文本拆分成小文本块(chunk),通过 embeddings API 转换成 embeddings 向量并保存。 当用户提问时,将问题也转换成向量,与向量储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API。 理解 embeddings: embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示。 常见的向量距离计算方式是欧几里得距离。 使用 Coze 创建个人知识库: 来到个人空间,找到知识库导航栏,点击创建知识库。 知识库是共享资源,多个 Bot 可以引用同一个知识库。 选择知识库的格式(目前支持文档、表格、图片)并填写信息。 可选择本地文档或问答对表格,还能进行自定义的文档切割。 数据处理完成后,一个问答对会被切割成一个文档片。 关于使用知识库,可参考教程:
2025-03-07
我是一个新手小白,帮构思一下关于如何学习AI的PPT .要求有包括豆包,AI数字人,KIMI,灵犀,如影,剪映,即梦等APP学习技术。都带上APP网址
以下是为您构思的关于如何学习 AI 的 PPT 大纲: 幻灯片 1:封面 标题:如何学习 AI 幻灯片 2:目录 1. AI 辅助 PPT 的原理和作用 2. 几款 PPT 生成工具(网站) 3. 相关 APP 介绍 幻灯片 3:AI 辅助 PPT 的原理和作用 1. 减轻排版工作的压力 2. 生成打底的内容,减轻人写内容的工作 3. 文章生成 PPT,让 AI 帮忙摘要内容,生成大纲列表 4. 主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容 5. 在特定场景下不用改直接用,如学生快速为小组展示配 PPT 幻灯片 4:AI 辅助 PPT 的流程 1. 用户输入 2. AI 输出 3. 排版 网站把 AI 输出的文本丢给 LLM,让它根据内容,在已有的 UI 组件中选择更适合的组件。按时间线,每页 PPT 的文字,选出整个 PPT 中,每一页的 UI 组件。有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,用户不满意可以自行选择模版 幻灯片 5:几款 PPT 生成工具(网站) 1. 讯飞智文:https://zhiwen.xfyun.cn/ (免费引导好) 2. Mindshow.fun :http://Mindshow.fun (Markdown 导入) 3. kimi.ai :http://kimi.ai (选 PPT 助手暂时免费效果好) 4. Tome.app :http://Tome.app (AI 配图效果好) 5. Chatppt.com :http://Chatppt.com (自动化程度高) 6. 百度文库:https://wenku.baidu.com (付费质量好) 幻灯片 6:相关 APP 介绍 1. 豆包 2. AI 数字人 3. KIMI 4. 灵犀 5. 如影 6. 剪映(图文成片,只需提供文案,自动配图配音) 7. 即梦 希望以上内容对您有所帮助!
2025-03-05
国产ai,除了deepseek能力最强,如元宝ai,文言一心,kimi,纳米ai,通义等,哪个能力最强
以下是关于国产 AI 产品在 2025 年 1 月的一些榜单情况: 在国内流量榜中,排名依次为:deepseek、豆包、Kimi、文心一言、deepseek 开放平台、百度 AI 助手、阿里通义、纳米 AI 搜索、秘塔 AI 搜索。 在国内月活榜中,排名依次为:deepseek、豆包、deepseek 开放平台、Kimi、百度 AI 助手、文心一言、知乎直答、纳米 AI 搜索、沉浸式翻译。 需要注意的是,不同 AI 产品在不同方面可能具有各自的优势,其能力的强弱也会因具体应用场景和用户需求而有所不同。
2025-02-26
给出实际的操作案例,结合deepseek、kimi、豆包工具。
以下是结合 deepseek、kimi、豆包工具的实际操作案例: 在 2025 年 1 月的国内月活榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,活跃用户达 7068 万人,环比变化为 24.3616%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,活跃用户为 779 万人,环比变化为 0.1911%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,活跃用户为 591 万人,环比变化为 0.1135%,所属公司为月之暗面。 在 2025 年 1 月的国内流量榜中: deepseek 作为聊天机器人,网址为 chat.deepseek.com,访问量达 22541 万,环比变化为 20.4093%,所属公司为深度求索。 豆包作为聊天机器人,网址为 doubao.com,访问量为 3457 万,环比变化为 0.1041%,所属公司为字节跳动。 kimi 作为聊天机器人,网址为 kimi.moonshot.cn,访问量为 3282 万,环比变化为 0.1283%,所属公司为月之暗面。 此外,在使用效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上天衣无缝。
2025-02-20
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
github copilot
Copilot 一词在航空领域原本指飞行员的助手或副驾驶,在 AI 领域则被用来形象地描述 AI 的角色和功能。 在 AI 领域,Copilot 强调其辅助和协作性质,像飞行中的副驾驶一样协助用户完成各种任务,提供信息、解答问题甚至进行创新性的内容创作,使用户的工作或生活更加便捷高效。 例如,Microsoft Copilot 可以进行智能对话、提供信息、帮助用户创作内容等。而 Github Copilot 是专为编程设计的,它可以理解用户的代码,提供代码建议,甚至帮助用户写出新的代码。 在编程或辅助编程方面,有以下一些 AI 产品: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出的 AI 编程助手,支持和兼容多种语言和 IDE,可为程序员快速提供代码建议,帮助开发者更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出的一款基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的 AI 编程软件,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源的免费 AI 编程助手,基于 130 亿参数的预训练大模型,可以快速生成代码,帮助开发者提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的一款 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,可以了解开发者的整个代码库,不止是代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调的代码大模型。 7. Codeium:一个由 AI 驱动的编程助手工具,旨在通过提供代码建议、重构提示和代码解释来帮助软件开发人员,以提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能会有所不同,您可以根据自己的需求来选择最适合您的工具。 对于程序员来说,HuggingFace 声称其性能超过了用于训练 OpenAI 的 GitHub Copilot 的模型。StarCoder 是在一个名为 The Stack 的开放数据集上进行训练的,可与 VSCode 集成。 Hugging Face 发布了名为 HuggingChat 的开源聊天机器人,拥有 Web 界面和 API。 开源社区与科技巨头竞争激烈,RedPajama 是 Together 最新的倡议,设定了大胆的目标来推动开源模型的进步,包括制作数据集、训练基础模型、实现指令调整等。 项目链接:https://www.together.xyz/blog/redpajama 模型链接:https://www.together.xyz/blog/redpajamamodelsv1
2025-04-09
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
和ima.copilot功能差不多的产品
以下是一些和 ima.copilot 功能差不多的产品: 飞桨 PaddlePaddle:代码助手,网址为 paddlepaddle.org.cn。 百度橙篇:写作软件,网址为 cp.baidu.com。 BigModel:开发工具,网址为 open.bigmodel.cn。 万兴 PDF:研究工具,网址为 pdf.wondershare.cn。 百川智能:聊天机器人,网址为 baichuanai.com。 360 智脑:聊天机器人,网址为 ai.360.com。 GitMind 思乎:思维导图,网址为 gitmind.cn。 阿里通义听悟:效率工具,网址为 tingwu.aliyun.com。
2025-03-06
ima.copilot怎么高效利用
ima.copilot 高效利用的方法如下: 文档解读:在首页点击文档解读,可从知识库添加文档或上传本地文档,输入问题后 ima 作答,并会引用公众号资料作为参考。但需注意其回答与上传文档的关联度较弱,回答底部可点击“记笔记”在应用内新建笔记文档。 阅读公众号文章:复制公众号链接即可开始阅读,右侧聊天窗口可通过系统默认提示词快速总结文章要点,左侧正文窗口选中部分内容后,可点击 AI 解读和翻译按钮,AI 回答和正文选中内容都可点击“记笔记”。 搜索查看各种政策类文章:一是因为公众号内容更新快,二是有官方公众号发布的权威内容。 ima.copilot 最大的优势是拥有公众号这座内容金山,但知识库内搜索和笔记内搜索目前做得一般。 相关资料链接:腾讯 ima.copilot→https://ima.qq.com 。 此外,在“AI 智库|月度榜单? (11 月)”中,ima.copilot 在国内个人助理分类中排名 A4+1,网址为 ima.qq.com,活跃用户为 24 万人,环比变化为 2.5462 。
2025-03-06
agent和copilot的区别
Copilot 和 Agent 主要有以下区别: 1. 核心功能: Copilot 更像是辅助驾驶员,依赖人类指导和提示完成任务,功能局限于给定框架内。 Agent 像初级主驾驶,具有更高自主性和决策能力,能根据目标自主规划处理流程并自我迭代调整。 2. 流程决策: Copilot 处理流程依赖人类确定,是静态的,参与更多在局部环节。 Agent 解决问题流程由 AI 自主确定,是动态的,能自行规划任务步骤并根据反馈调整流程。 3. 应用范围: Copilot 主要用于处理简单、特定任务,作为工具或助手存在,需要人类引导监督。 Agent 能够处理复杂、大型任务,并在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot 主要依赖 LLM 性能,开发重点在于 Prompt Engineering。 Agent 同样依赖 LLM 性能,开发重点在于 Flow Engineering,把外围流程和框架系统化。 此外,Agent 具备“决策权”,可自主处理问题,无需确认;Copilot 需要人类确认才能执行任务。业界普遍认为,Copilot 更适合各行业现有软件大厂,而 AI Agent 为创业公司提供了探索空间。
2025-02-18
有哪些优秀的AI copilot?
以下是一些优秀的 AI copilot: 1. 对于编程辅助方面: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 在 Agent 构建平台方面: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作等,并能部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并能访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 3. 此外,还有一些新的 AI 产品和网站,如: SciSpace Copilot:由印度论文服务平台 SciSpace 开发,用于解释科学文献中的文本、数字和表格,输出内容更精确。链接:https://typeset.io/ AIPRM for ChatGPT:SEO Prompt 模板插件,支持 ChatGPT 和 Midjourney 等。链接:https://www.aiprm.com/ Teamsmart:有趣的文档助手,根据不同职业/技能提供不同能力点的机器人。链接:https://www.teamsmart.ai/ Boring Report:应对标题党的神器,去除文章夸张表述,保留客观事实。
2025-01-18
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
python环境安装
以下是 Python 环境安装的步骤: 1. 点击电脑“系统”,直接输入“cmd”,点击回车,打开命令窗口。 2. 在命令窗口中,粘贴入以下代码,确认是否有 Python 和 pip。 3. 两步命令输入完,核对一下: 如果有的话,会分别显示出版本号。那么可以跳过“安装环境这一步,直接到“二、部署项目”。 如果没有的话,需要进行安装。 4. 安装 Python: 对于 Windows 系统,可以点击以下链接下载安装包: (有小伙伴说下载不了,可去公众号【Equity AI】回复“HOOK”获取下载地址:https://www.wenshushu.cn/f/ec5s5x1xo3c) 对于 Mac 系统,可以点击以下链接下载安装包: 5. 安装注意: 安装时务必勾选"Add Python to PATH"选项。 建议使用默认安装路径。 6. 安装完成后,关闭窗口,再次运行之前的两行命令确认是否安装成功。
2025-04-08
学习python为什么要安装pandas,juptyer
学习 Python 安装 pandas 和 Jupyter 的原因如下: 数据处理基础:pandas 是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。在数据处理中,如读取数据(pd.read_csv)等操作都依赖于 pandas 库。 开发环境:Jupyter Notebook 是一种交互式的编程环境,非常适合进行数据分析和探索性编程。它可以让您逐段运行代码,方便查看中间结果,并且能够将代码、文本和图像等内容整合在一个文档中,有助于更好地理解和展示数据分析的过程和结果。代码也适合在其他 IDE(如 PyCharm、VS Code)中运行。 在一些实践项目中,如基于泰坦尼克号数据集绘制堆叠柱状图及搭建预测模型、用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图、鸢尾花数据多维分布探索与交互可视化实践等,都需要 Python 基础与环境配置,包括通过 pip 安装 pandas 库,以及在 Jupyter Notebook 或其他 IDE 中运行代码。
2025-04-08
trae如何安装
以下是 Trae 的安装步骤: 1. 由于 Trae AI 官网部署在海外,且其本身需要使用海外的大模型,所以需要通过 VPN 等方式科学上网。 2. 在官网(https://www.trae.ai/download)直接点击下载,Trae 会自动识别您的电脑芯片。 3. 下载完成后,如果是 Mac 系统,将左侧的 Trae 应用拖动到右侧的文件夹内;如果是 Windows 系统,双击 Trae 图标,即可完成安装。 4. 安装完成后,点击图标启动,进行以下简单设置: 选择主题背景和默认语言,可选择中文。 对于提供的 Cursor、VS Code 等其他 AI 编程工具的配置和插件迁移,如果是第一次使用类似工具,可直接点“Skip”选项。 对于不理解意思的设置,直接点“Skip”选项。 5. 选择合适的登录方式,登录方式包括 Google 账号登录、Github 账号登录、邮箱登录。如果没有账号,可新注册一个账号。推荐有余力的用户访问 Github 官网(https://github.com/)注册。 注意:Trae 仅在部分地区可用,可能需要开启科学上网。登录完之后,若出现“App Unavailable”提示,可能是所在地区不可用,此时需要开启科学上网。网页登录成功之后可以把科学上网关掉。
2025-04-08
linux下安装 anythingLLM
以下是在 Linux 下安装 AnythingLLM 的相关指导: 1. 安装地址:https://useanything.com/download 。 2. 安装完成后会进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 3. AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 与其他项目数据进行隔离。 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 4. 完成上述配置后,即可与大模型进行对话。 此外,在 GitHubDaily 开源项目列表 2023 年复盘的 AIGC 部分中,也有关于 AnythingLLM 的介绍: 是一个可打造成企业内部知识库的私人专属 GPT!可以将任何文档、资源或内容转换为大语言模型(LLM)知识库,使得在对话过程中可引用到里面的内容。 本文的思路来源于视频号博主黄益贺,作者按照他的视频进行了实操,并附加了一些关于 RAG 的额外知识。
2025-03-27