Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

图片修复高清

Answer

以下是关于图片修复高清的相关知识:

一、使用 SD 进行高清修复

  1. 选择高清修复,放大两倍,放大算法选择 R-ESRGAN 4x + Anime6B(二次元绘图)或 R-ESRGAN 4x +(写实类风格)。
  2. 文生图高清修复的原理是命令 AI 按照原来内容重新画一幅,新生成的绘图与原绘图在细节上会有不同。若想更接近原绘图,可适当降低重绘幅度,如 0.2 - 0.3。但重绘幅度低可能导致某些部分出现问题,如手部,可通过反复抽卡、图生图局部重绘或生成多张图片后用 PS 合成等办法解决。
  3. 由于高清修复渲染耗时较长,建议先采用低分辨率抽卡刷图,抽到喜欢的图后,用随机种子固定图片再进行高清修复。
  4. 第二种方式是使用图生图的脚本功能,画好图后发送到图生图,点击脚本选择使用 SD 放大。

二、图像高清修复,无损放大 N 倍

  1. 进行高清修复,把原本模糊的图片修复并放大 2 倍。
  2. Checkpoint 大模型使用 Iceclear/StableSR,并搭配 Stable SR Upscaler 模型,以最大程度修复图像,推理图片每个噪点来还原图像。
  3. 提示词部分应包含想要达到的目的内容,如正向:(masterpiece),(best quality),(realistic),(very clear);反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。

三、Tusiart 相关概念

  1. 随机种子 seed:生成的每张图都有随机种子,固定好种子后可对图片进行“控制变量”效果的操作,如修改提示词等。第二次生图用上次图的种子且其他设置不变,会出一样的图片。
  2. Clip Skip:用于生成图片后控制、调整构图变化,一般设为 2。
  3. ENSD:eta 噪声种子增量,默认 0。
  4. 高清修复:在原本设置的图像分辨率基础上让图像分辨率更精细,理解为两次绘图流程,第一次绘图出内容,第二次绘图添加画面精细。
Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】如何画出商用级别的高清大图

接下来我们选择高清修复,放大两倍,放大算法选择R-ESRGAN 4x+ Anime6B。这个算法通常是二次元绘图用的,如果是写实类的风格,可以选择R-ESRGAN 4x+。我们看一下高清修复下的这张画,文生图高清修复的原理其实是命令AI按照原来的内容重新画一幅,所以新生成的绘图和原来的绘图在细节上会不太一样。如果想要更接近之前的绘图,可以适当降低重绘幅度。我们来对比一下修复前后的区别,这次使用的重绘幅度为0.7,所以可以看到帽子和耳机都有了变化,想要保留原来的细节,可以尝试0.2-0.3。我们再使用重绘幅度为0.3绘制一下,可以看到服饰细节就比较接近了,但是由于重绘幅度低,手部就出现了问题。这种情况,就要通过反复抽卡,图生图局部重绘,或者生成多张图片后进ps合成等办法去解决。由于高清修复的渲染耗时比较长,所以我们一般建议先采用低分辨率进行抽卡刷图,当抽到自己比较喜欢的图之后,再使用随机种子来固定图片进行高清修复。二、SD放大第二种方式是使用图生图的脚本功能,当我们使用文生图画好一张图之后,可以将它发送到图生图。点击下面的脚本,选择使用SD放大。

图像高清修复,无损放大 N 倍

第二部分进行高清修复,把原本模糊的图片修复,并进行2倍放大。Checkpoint大模型使用Iceclear/StableSR,这是一种新颖的方法来利用封装在预先训练的文本到图像扩散模型中的先验知识来实现盲超分辨率(SR)。具体来说,就是通过时间感知编码器,在不改变预先训练的合成模型的情况下实现有希望的恢复结果,从而保留生成先验并最小化训练成本。并且需要搭配Stable SR Upscaler模型才能在最大程度上修复图像,推理图片每个噪点,以还原图像。提示词部分应包含我们想要达到的目的内容,在此场景中如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)(杰作),(最高品质),(逼真的),(非常清晰);3D,卡通,动漫,素描,(最差质量),(低质量)全程采取两次高清修复,这一次修复原始图像分辨率并且放大,已经很完美还原,但是分辨率并不够,继续进行下一步。

Tusiart简易上手教程

1.随机种子seed:生成的每张图都有随机种子,在固定好种子以后,可以对图片进行“控制变量”效果的操作,比如说修改提示词等操作。如果你第二次生图用来上张图的种子,但是其他设置都不改,就会出一样的图片。(注意,第一次生成图的时候是还没有种子的,不用动这里,空着就行)1.Clip Skip:可以用于在生成图片之后控制、调整构图变化,一般设成2就行了,早期不用花太多精力在这里。1.ENSD:eta噪声种子增量,这个会改变种子直接默认0就好。1.高清修复:在本来设置的图像分辨率基础上,让图像分辨率变得更加精细。我理解是和原来的图像分辨率设置形成了两次绘图的流程,第一次绘图出内容,第二次绘图添加画面精细。2.修复方式:这个我没懂,每次学别人的操作,还不知道影响在哪,等我学会了我会回来改这里的哈哈哈。读者老爷们可以催更。3.高清修复采样次数:和前面采样次数一样理解就好。4.重绘幅度:相当于图生图的重绘。在原有的内容上,如果重绘幅度不是0,那么就会在变得高清的同时有一部分内容上的变动,不过用户看不到中间过程。

Others are asking
我想图生图,生成高清矢量图
以下是关于图生图生成高清矢量图的相关内容: ControlNet 参数: 预处理器:canny,模型:control_v11p_sd15_canny 预处理器:lineart_standard,模型:control_v11p_sd15_lineart 放大高清大图: 使用 Multi Diffusion + Tiled VAE + ControlNet Tile 模型 将生成的图片发送到图生图,关键词种子会一并发送过去,重绘幅度建议 0.35,太高图片细节会发生变化 Lora 生图: 点击预览模型中间的生图会自动跳转到相应页面 模型上的数字代表模型强度,可在 0.6 1.0 之间调节,默认为 0.8 可自己添加 lora 文件,输入正向提示词,选择生成图片的尺寸(横板、竖版、正方形) 采样器和调度器新手小白可默认,迭代步数在 20 30 之间调整,CFG 在 3.5 7.5 之间调整,随机种子 1 代表随机生成图 生成的图会显示在右侧,若觉得某次生成结果不错,想要微调或高分辨率修复,可复制随机种子粘贴到相应位置 确认合适的种子和参数想要高清放大,可点开高清修复,选择放大倍数,新手小白可默认算法,迭代步数建议在 20 30 之间,重绘幅度正常在 0.3 0.7 之间调整 高清修复: 文生图高清修复原理是命令 AI 按原来内容重新画一幅,新生成绘图和原绘图细节会不同,降低重绘幅度可更接近原图,如重绘幅度 0.7 时帽子和耳机有变化,0.3 时服饰细节接近但手部可能出现问题,可通过反复抽卡、图生图局部重绘或生成多张图片后 ps 合成等解决 由于高清修复渲染耗时长,建议先低分辨率抽卡刷图,喜欢的图再用随机种子固定进行高清修复 SD 放大: 文生图画好图后发送到图生图,点击脚本选择使用 SD 放大 重绘幅度设置 0.3,放大倍率为 2,图块重叠像素设置为 64,原图尺寸加上重叠像素,如 512x768 变为 576x832,重绘幅度要保持较低数值,否则可能出现新人物
2025-04-14
高清视频修复ai工具
以下为一些高清视频修复的 AI 工具: 1. 星流一站式 AI 设计工具: 高级模式下,基础模型允许使用更多的微调大模型,图片参考允许使用更多的图像控制功能。星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法影响图像放大后的图像质量,重绘幅度与初步生成的图像的相似度,其他参数默认即可。 采样器和采样步数会影响出图质量和生成时间,随机种子和 CFG Scale 也有相应作用,脸部/手部修复利用算法对人像的脸部或者手部进行修复。 2. Pika: 发布 Pikaddition 能力,可以将用户图片物体融合到拍摄视频,不会改变原视频且保证新视频创意效果自然。 支持用户自行上传视频(视频时长需 5s 以上),支持物体、人物(卡通、真人)图像,有 15 次免费尝试机会。 使用方法:进入 Pika 官网,页面底部选择 Pikaddition,上传视频、图像,输入文字描述提示词,点击确认即可。 地址:https://pika.art/ 3. Topaz Labs: 推出 Starlight 首个用于视频修复的扩散模型,只需输入素材,AI 可自动降噪、去模糊、放大、抗锯齿,无需手动调整与参数调整,达成专业视频高清修复。 目前正在 Beta 中。 地址:https://www.topazlabs.com/ 4. Tusiart: 具有高清修复功能,在本来设置的图像分辨率基础上,让图像分辨率变得更加精细。 有 ADetailer 面部修复插件。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
生成高清视频
以下是关于生成高清视频的相关信息: Meta 发布的 Meta Movie Gen 文生视频模型: 由视频生成和音频生成两个模型组成。 Movie Gen Video 是 30B 参数的 Transformer 模型,能从单个文本提示生成 16 秒、16 帧每秒的高清视频,相当于 73K 个视频 tokens,可进行精确视频编辑和个性化视频生成,在保持角色身份一致性和运动自然性方面表现出色,通过预训练微调范式完成,沿用了 Transformer 特别是 Llama3 的许多设计,预训练阶段在海量视频文本和图像文本数据集上联合训练,微调阶段进行有监督微调,还引入流匹配作为训练目标,效果优于扩散模型。 Movie Gen Audio 是 13B 参数的 Transformer 模型,能接受视频输入及可选文本提示生成高保真音频。 Sora 相对于其他文本生成视频 AI 的优势: 能够生成高达一分钟的高清视频。 支持生成不同分辨率、纵横比的视频。 能生成显示人物复杂、动态运动的视频,运动自然流畅。 能够捕捉和再现丰富的场景细节。 在生成长视频时能保持场景和角色的一致性。 能够处理多角色交互,角色互动自然有信服力。 采用类似 GPT 的技术,自然语言理解强大。 能模拟动作对环境的影响。 可以模拟视频游戏等数字环境。 一些海外的 AI 视频生成工具: Haiper(有免费额度):https://haiper.ai/ ,能文生视频、图生视频、素描生视频、扩展视频,生成 HD 超高清视频,文生视频支持选择风格、秒数、种子值,图生视频只能写提示词、秒数、种子值,还能进行视频重绘和局部重绘。 DynamiCrafter(免费):https://huggingface.co/spaces/Doubiiu/DynamiCrafter ,https://github.com/Doubiiu/DynamiCrafter?tab=readmeovfile ,能生成 2 秒图生视频,还可以做短视频拼长视频。 Morph studio(内测):https://app.morphstudio.com/ ,暂未对外开放,可在官网提交内测申请,discord 上可以免费体验,支持文生视频、图生视频,英文提示词,支持运镜、运动强度、尺寸、秒数设置,默认生成 3 秒视频。
2025-03-25
能将像素低的图片高清化的AI工具
目前有一些可以将像素低的图片高清化的 AI 工具,例如: 1. Topaz Gigapixel AI:能够通过深度学习算法对图片进行放大和增强,提高清晰度和细节。 2. Adobe Photoshop 的增强功能:Photoshop 中的一些智能滤镜和插件也可以在一定程度上改善图片的清晰度。 需要注意的是,不同的工具在处理不同类型的图片时效果可能会有所差异,您可以根据具体需求进行选择和尝试。
2025-03-19
我现在要对一些很糊的图像进行图像修复,就是把图像变高清,有什么工具吗?
以下是一些可用于图像修复变高清的工具和方法: 1. 图像修复放大流程: 输入原始图像:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 图像高清修复:使用 Iceclear/StableSR 模型,并搭配 Stable SR Upscaler 模型,推理图片噪点以还原图像。提示词应包含想要达到的目的内容,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 图像高清放大:对第一次放大修复后的图像进行二次修复,realisticVision 底膜效果较好。使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型进行二次放大。 2. 星流一站式 AI 设计工具: 右侧生成器的高级模式:与入门模式相比增加了基础模型、图片参考等更多功能。基础模型允许使用更多微调大模型和更多图像控制功能,如高清分辨率修复等。同时,还可以调整放大算法、重绘幅度等参数,以及选择不同的采样器。 3. SD 新手入门图文教程: 文生图最简流程中的一些参数: CFG Scale(提示词相关性):控制图像与提示的匹配程度,一般开到 7 11。 生成批次和每批数量:影响生成图像的组数和数量。 尺寸:推荐使用小尺寸分辨率结合高清修复(Hires fix)。 种子:决定模型生成图片的随机性。 高清修复:通过勾选“Highres.fix”启用,先按指定尺寸生成图片,再通过放大算法扩大分辨率以实现高清大图效果。
2025-03-04
旧照片修复
旧照片修复是 AI 绘画领域中的一项重要应用。以下是关于旧照片修复的一些相关信息: 以往解决旧照片修复问题往往需要搭建极为复杂的工作流,现在 GPT 4O 只需要一句话就可以实现。 图像放大修复是 AI 绘画领域必不可少的一部分,利用 AI 技术进行图像修复,可以让模糊的旧照片重现清晰,保留珍贵回忆。例如,以前手机拍摄的低分辨率图片,放到如今智能手机上观看会非常模糊,这时可用 AI 技术进行高清修复。 ComfyUI 结合特定工作流,只需十几个基础节点就能实现较好的老照片修复效果。 参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。 Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练,目的是让模型学会处理各种真实世界中可能遇到的图像退化情况。 Flux Ultimator 能增加小细节,增强色彩,在 0.1 的强度设置下也有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 若图片质量细节不够,可选择 T5 Clip 的 fp16 版本。
2025-04-14
老照片修复
老照片修复是一个具有一定复杂性但通过 AI 技术可以实现较好效果的领域。以下是一些相关信息: 在解决老照片修复问题上,以往 AI 往往需要搭建极为复杂的工作流,而现在 GPT 4O 只需要一句话就可以实现。 对于老照片上色,可启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下将图片放大到足够倍数。 对于复杂的老照片,如人物多、场景复杂、像素低的情况,可在 PS 里进行角度调整和照片裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前的工作流较复杂,现在只要十几个基础节点就能实现同样甚至更好的效果。一般先确认放大倍数,再根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用特定训练方式处理各种真实世界中可能遇到的图像退化情况。Flux Ultimator 能增加小细节和放大色调丰富性、深度,在 0.1 强度设置下有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。若图片质量细节不够,可选择 fp16 版本的 T5 Clip。
2025-04-14
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,实现方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,例如 GPT 4O 只需要一句话,就可以实现部分修复需求。 在具体的修复方法中,如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定,还可加入第二个 controlnet 来控制颜色。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只要十几个基础的节点就能实现同样的效果甚至更好。其中涉及参数的调节,一般先确认放大的倍数,然后根据出来的图片来调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-11
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,处理方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,如 GPT 4O 等技术,只需要一句话就可以实现部分修复需求。 在具体的修复方法中,例如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。如果直接上色效果不佳,可以只给场景方向的提示词,让 AI 自行决定颜色。还可以加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,并给出简单的关键词,如蓝天、绿树、灰石砖等。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前较为复杂的工作流现在只需十几个基础节点就能实现同样甚至更好的效果。在参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时需将强度降低小于 0.5。如果发现出来的图片质量细节不够,可以选择 fp16 版本的 T5 Clip。
2025-04-10
照片修复
以下是关于照片修复的相关信息: 使用 Gemini 2.0 Flash 进行照片修复: 零门槛:即使不会 PS,只要会打字就能操作。 速度快:几秒钟出结果。 效果提升小技巧:指令要具体清晰,比如“把帽子改成红色,加个星星图案”;使用清晰的照片,模糊的图可能效果不佳;多尝试修改指令。 图像高清修复的实现技术拆解: 整个流程分为三部分: 1. 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 2. 图像高清修复:使用 Iceclear/StableSR 等模型进行修复和 2 倍放大,搭配合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 3. 图像高清放大:用 realisticVision 底膜进行二次修复,使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型二次放大。 此外,GPT 4O 在解决老照片修复等问题时,以往需要搭建复杂工作流,现在只需一句话即可实现。
2025-04-10
可以增强图片清晰的的ai
以下是一些可以增强图片清晰度的 AI 工具: 1. Magnific:https://magnific.ai/ 2. ClipDrop:https://clipdrop.co/imageupscaler 3. Image Upscaler:https://imageupscaler.com/ 4. Krea:https://www.krea.ai/ 更多工具可以查看网站的图像放大工具库:https://www.waytoagi.com/category/17 此外,PMRF 也是一种全新的图像修复算法,它具有以下特点: 擅长处理去噪、超分辨率、着色、盲图像恢复等任务,生成自然逼真的图像。 不仅提高图片清晰度,还确保图片看起来像真实世界中的图像。 能够应对复杂图像退化问题,修复细节丰富的面部图像或多重损坏的图片,效果优质。 详细介绍: 在线体验: 项目地址: 这些 AI 画质增强工具都具有不同的特点和功能,可以根据您的具体需求选择合适的工具进行使用。
2025-04-18
图片提取文字
以下是关于图片提取文字的相关信息: 大模型招投标文件关键数据提取方案:输入模块设计用于处理各种格式的文档输入,包括 PDF、Word、Excel、网页等,转换成可解析的结构化文本。多种文件格式支持,对于图片,可以借助 OCR 工具进行文本提取,如开放平台工具:。网页可以使用网页爬虫工具抓取网页中的文本和表格数据。 谷歌 Gemini 多模态提示词培训课:多模态技术可以从图像中提取文本,使从表情包或文档扫描中提取文本成为可能。还能理解图像或视频中发生的事情,识别物体、场景,甚至情绪。 0 基础手搓 AI 拍立得:实现工作流包括上传输入图片、理解图片信息并提取图片中的文本内容信息、场景提示词优化/图像风格化处理、返回文本/图像结果。零代码版本选择 Coze 平台,主要步骤包括上传图片将本地图片转换为在线 OSS 存储的 URL 以便调用,以及插件封装将图片理解大模型和图片 OCR 封装为工作流插件。
2025-04-15
图片变清晰
以下是关于图片变清晰的相关内容: 使用清影大模型: 输入一张图片和相应提示词,清影大模型可将图片转变为视频画面,也可只输入图片让模型自行发挥想象生成有故事的视频。 选用尽可能清晰的图片,上传图片比例最好为 3:2(横版),支持上传 png 和 jpeg 图像。如果原图不够清晰,可采用分辨率提升工具将其变清晰。 提示词要简单清晰,可选择不写 prompt 让模型自行操控图片动起来,也可明确想动起来的主体,并以“主体+主题运动+背景+背景运动”的方式撰写提示词。 常见的 AI 画质增强工具: Magnific:https://magnific.ai/ ClipDrop:https://clipdrop.co/imageupscaler Image Upscaler:https://imageupscaler.com/ Krea:https://www.krea.ai/ 更多工具可查看网站的图像放大工具库:https://www.waytoagi.com/category/17 用 AI 给老照片上色并变清晰: 将照片放入后期处理,使用 GFPGAN 算法将人脸变清晰。然后将图片发送到图生图中,打开 stableSR 脚本,放大两倍。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免对原图产生干扰。
2025-04-14
怎么让图片动起来
要让图片动起来,可以参考以下几种方法: 1. 使用即梦进行图生视频:只需上传图片至视频生成模块,提示词简单描绘画面中的动态内容即可生成时长为 3 秒钟的画面。运镜类型可根据剧本中的镜头描绘设置,主要设置以随机运镜为主。生成速度根据视频节奏选择,比如选择慢速。 2. 使用 Camera Motion: 上传图片:点击“Add Image”上传图片。 输入提示词:在“Prompt”中输入提示词。 设置运镜方向:选择想要的运镜方向,输入运镜值。 设置运动幅度:运动幅度和画面主体运动幅度有关,与运镜大小无关,可以设置成想要的任意值。 其它:选择好种子(seed),是否高清(HD Quality),是否去除水印(Remove Watermark)。 生成视频:点击“create”,生成视频。 3. 对于复杂的图片,比如多人多活动的图: 图片分模块:把长图分多个模块。 抠出背景图:智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。 绿幕处理前景图:将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 前景图动态生成视频:用 AI 视频生成工具写入提示词让图片动起来,比如即梦、海螺、混元等。不停尝试抽卡。 生成视频去掉背景:用剪映把抽卡合格的视频放在去掉内容的背景图片,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。
2025-04-12
图片文字转文档
图片文字转文档可以通过以下方式实现: coze 插件中的 OCR 插件: 插件名称:OCR 插件分类:实用工具 API 参数:Image2text,图片的 url 地址必填 用途:包括文档数字化、数据录入、图像检索、自动翻译、文字提取、自动化流程、历史文献数字化等。例如将纸质文档转换为可编辑的电子文档,自动识别表单、票据等中的信息,通过识别图像中的文字进行搜索和分类,识别文字后进行翻译,从图像中提取有用的文字信息,集成到其他系统中实现自动化处理,保护和传承文化遗产。 插件的使用技巧:暂未提及。 调用指令:暂未提及。 PailidoAI 拍立得(开源代码): 逻辑:用户上传图片后,大模型根据所选场景生成相关的文字描述或解说文本。 核心:包括图片内容识别,大模型需要准确识别图片中的物体、场景、文字等信息;高质量文本生成,根据图片生成的文字不仅需要准确,还需符合专业领域的要求,保证文字的逻辑性、清晰性与可读性。 场景应用: 产品文档生成(电商/零售):企业可以利用该功能将商品的图片(如电器、服饰、化妆品等)上传到系统后,自动生成商品的详细描述、规格和卖点总结,提高电商平台和零售商的商品上架效率,减少人工编写文案的工作量。 社交媒体内容生成(品牌营销):企业可使用图片转文本功能,帮助生成社交媒体平台的营销文案。通过上传产品展示图片或品牌活动图片,模型可自动生成具有吸引力的宣传文案,直接用于社交媒体发布,提高营销效率。 法律文件自动生成(法律行业):法律行业可以使用图片转文本技术,自动提取合同、证据材料等图片中的文本信息,生成法律文件摘要,辅助律师快速进行案件分析。
2025-04-11
如何去除图片中的文字内容
以下是去除图片中文字内容的方法: 1. 图像预处理: 图像去噪:使用去噪算法(如高斯滤波、中值滤波)去除图像中的噪声。 图像增强:通过增强算法(如直方图均衡化、对比度增强)提升图像的清晰度和对比度。 2. 图像分割:使用图像分割算法将图片中的文字和背景分离。常用的分割算法包括阈值分割、边缘检测和基于区域的分割方法。 3. 文字检测:在分割后的图像中,使用文字检测算法(如基于深度学习的文本检测模型)识别出文字区域。 4. 文字识别:对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据。常用的文字识别技术包括基于深度学习的端到端文本识别模型和传统的 OCR(Optical Character Recognition)技术。 5. 后处理:根据需求进行后处理,如去除残余的噪点、填补文字区域的空白等。 6. 机器学习模型训练(可选):如有足够的数据,可以采用机器学习技术训练模型,通过学习样本中的文字特征来自动去除图片上的文字。 7. 优化算法:对整个处理流程进行优化,提高处理速度和准确度。可以采用并行计算、硬件加速等方法提升算法的效率。 8. 移动端集成:将设计好的算法和模型集成到移动应用程序中,以实现去除图片文字的功能。可以使用移动端开发框架(如 iOS 的 Core ML、Android 的 TensorFlow Lite)来实现模型的部署和调用。 此外,像 Gemini 2.0 Flash 等工具也可以通过自然语言指令来去除图片中的文字,指令如“去掉 XXX”。DALL·E 也能实现去掉图片中的错误文字等操作。
2025-04-11