目前常见的 AI 模型包括:
智谱·AI 开源的模型有: |模型|介绍|代码链接|模型下载| |-|-|-|-| |WebGLM-10B|利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。|WebGLM|Huggingface| |WebGLM-2B|利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。|WebGLM|Huggingface| |MathGLM-2B|在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT-4 在相同测试数据上 18.84%的准确率。|MathGLM|THU-Cloud| |MathGLM-Large|采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLM-large 和 GLM-10B。此外,还使用 ChatGLM-6B 和 ChatGLM2-6B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。|MathGLM|THU-Cloud| |MathGLM-10B|采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLM-large 和 GLM-10B。此外,还使用 ChatGLM-6B 和 ChatGLM2-6B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。|MathGLM|THU-Cloud魔搭社区| |MathGLM-ChatGLM-6B|采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLM-large 和 GLM-10B。|MathGLM| |
1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速
我们还开源了以下模型,以便用户使用我们多元化的产品。|模型|介绍|代码链接|模型下载|<br>|-|-|-|-|<br>|WebGLM-10B|利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。|[WebGLM](https://github.com/THUDM/WebGLM)|[Huggingface](https://huggingface.co/THUDM/WebGLM)|<br>|WebGLM-2B|利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。|[WebGLM](https://github.com/THUDM/WebGLM)|[Huggingface](https://huggingface.co/THUDM/WebGLM-2B)|<br>|MathGLM-2B|在训练数据充足的情况下,20亿参数的MathGLM模型能够准确地执行多位算术运算,准确率几乎可以达到100%,其结果显著超越最强大语言模型GPT-4在相同测试数据上18.84%的准确率。|[MathGLM](https://github.com/THUDM/MathGLM)|[THU-Cloud](https://cloud.tsinghua.edu.cn/d/cf429216289948d889a6/)|
|模型|介绍|代码链接|模型下载|<br>|-|-|-|-|<br>|MathGLM-Large|采用GLM的不同变体作为骨干来训练MathGLM,包括具有335M参数的GLM-large和GLM-10B。此外,还使用ChatGLM-6B和ChatGLM2-6B作为基座模型来训练MathGLM。这些骨干模型赋予MathGLM基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。|[MathGLM](https://github.com/THUDM/MathGLM)|[THU-Cloud](https://cloud.tsinghua.edu.cn/d/3d138deaf93441b196fb/)|<br>|MathGLM-10B|采用GLM的不同变体作为骨干来训练MathGLM,包括具有335M参数的GLM-large和GLM-10B。此外,还使用ChatGLM-6B和ChatGLM2-6B作为基座模型来训练MathGLM。这些骨干模型赋予MathGLM基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。|[MathGLM](https://github.com/THUDM/MathGLM)|[THU-Cloud](https://cloud.tsinghua.edu.cn/d/bc3c7b5c46304c2b88f6/)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/MathGLM/summary)|<br>|MathGLM-ChatGLM-6B|采用GLM的不同变体作为骨干来训练MathGLM,包括具有335M参数的GLM-large和GLM-10B。