Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何用AI抓取数据

Answer

以下是关于用 AI 抓取数据的相关内容:

  • 对于不会代码的情况,为满足抓取文章内容并生成缩略信息的要求,需重写代码。首先安装必要的库,然后使用特定代码,并注意在实际操作中替换为真实的 OpenAI API key。
  • 生成式人工智能在图形领域通过背后的模型,可根据用户提供的文本描述生成图像。这涉及数据收集,包括从公共数据库获取图像存档等,以获得足够基础来特征化物体、风格或概念;还涉及映射,即使用算法识别和提取图片关键视觉特征用于生成新作品。
  • 要判断一张图片是否为 AI 生成,现在有不少网站通过对大量图片数据的抓取和分析来给出判断可能性,例如 ILLUMINARTY 网站。但鉴定 AI 自身的逻辑算法存在不足,不能像人类一样综合考虑各种表现。
Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

为了满足你的要求,我们需要重写上述代码,以便首先抓取文章内容,然后使用假设的OpenAI API key(注意实际操作中需要替换为真实的API key)来生成文章的缩略信息。以下是整个过程的代码:首先,安装必要的库:接下来,使用以下代码:

生成式人工智能艺术形态想象 | 精简版

那么AI把表现一刀劈开,剩下了什么。生成式人工智能是一种全新的信息获取方式,而midjourney等工具所代表的是图形领域的信息获取通过背后的人工智能模型,可以根据用户提供的文本描述生成高度相关和创造性的图像。这种通过文本命令获得图像的方式叫做Prompting,是一种全新形态的人机交互。比如我输入:想象:安塞尔亚当斯的风光摄影,平遥,全景图,云隙光,丁达尔光,史诗的,明暗对照法就能获得以上图像。为什么能达成这样的能力。我们把复杂的计算机专业领域概念拆解成为三个简单的词汇。数据,映射和扩散。首先是数据,包括从公共数据库中获取世界上万事万物的图像存档、历史文献图片,或者创建特定的数据集以覆盖特定的风格或元素。最终,收集数据的目的是,获得足够的基础。用以特征化每一个世界上的物体、风格或概念。第二个部分是映射,在数据处理阶段,AI使用如卷积神经网络的算法,来识别和提取图片中的关键视觉特征,如颜色、形状、纹理等。这个过程涉及到从原始数据中学习到的特征的映射这些映射后的特征将用于生成新的艺术作品。

如何判断一张图片是否 AI 生成的

当然,要培养出鉴赏AI的技能,多少还是需要我们训练训练自己的大脑模型的。那如果不善于此的朋友,想要判断眼前的作品是否是AI造物呢?AI技术自己带来的造假难题,也该由AI自己的同僚互鉴打假来解决。现在已有不少网站在做这件事情,通过对大量的图片数据的抓取和分析,给出对画作属性的判断可能性。例如使用AI来鉴别AI绘图性质的网页:ILLUMINARTY(https://app.illuminarty.ai/)。但在测试过程中,有些结构严谨的真实摄影作品,反而会被识别为AI作图。这跟我们前面提到的,AI作画很难完成严谨真实的结构这一点,是相互矛盾的。鉴别的AI认为,过于严谨的图像不像是真实的人造产物。而画图的AI其实难以生成严谨的结构造型。这就是鉴定AI自身的逻辑算法,并不能像人类一样综合去考虑不符合人的逻辑的各种表现。多试几张,就能磕着瓜子看AI吵架了。甚至作长者摇头抚须状,长叹一声,「AI后生们,还有很长的路要走啊。」我们看完AI显眼包的快乐丢撵后,来聊聊「我们为什么要鉴别AIGC」?已经「知其然」,也大略「知其所以然」,而后终于能顺势讨论讨论「知何由以知其所以然」。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
有没有可以抓取公众号文章的 agent
以下是一些可以抓取公众号文章的方法和相关信息: 1. 可以通过读 SQLiteDB 或者获取 RSS XML 页面(http://127.0.0.1:4000/feeds/all.atom)来获取更新的公众号。个人选择在公众号订阅不太多时,建议使用分析 XML 页面,比较简单。可以写个程序获得公众号的更新文章,由于本地部署,无法直接将文章同步到 Coze,所以选择使用多维表格(当在线数据库,事实飞书多维表格后台也是使用类似 redis 或 TiDB 这样的数据库实现的)及飞书机器人 API 的方式来实现中间数据的传递。只要在多维表格中设置一个状态转换,就可以知道文章是否已经被解读和推送。 2. 可以通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答。例如使用 Docker 浏览器打开:http://127.0.0.1:4000 也可以 http://wewerss 服务的 IP:端口为上面设置的外部端口。先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号。然后在公众号源上,点添加。然后将想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(经测试最好不要超 40 个)。 3. 瓦斯阅读平台可以抓取公众号的内容,但平台上公众号不太全。 4. GitHub 上的 WeWe RSS 工具可以通过微信读书的方式订阅公众号。
2025-04-05
现在有能自主抓取股票交易数据的AI吗
目前在信息爆炸的时代,借助 AI 工具可以实现集检索、整合与分析为一体的工作。以 A 股行情问答为例,可构建一个 Bot,当被问及如“XX 股票今天表现怎么样?”“复盘今天的家电板块”等问题时,它能从海量市场数据中找到有价值信息,进行整合分析并提供个性化回复。但需要注意的是,若希望在本地私有化部署,就无法使用某些相关服务。 不过,尚未有明确表明存在能完全自主抓取股票交易数据的 AI 。
2025-03-15
deepseek 直接抓取网页内容
DeepSeek 直接抓取网页内容的相关工作流程如下: 1. 内容获取:只需输入新闻链接,系统就能自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,以 1ai.net 的资讯为例,输入新闻后会提取出很多链接,其中第一条通常是新闻主图。利用图片链接提取提示词,通过调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。 2. 文字部分:使用链接读取节点将文字内容提取出来,在提取链接后面接上一个大模型节点,如 DeepSeek R1 模型,用来重写新闻成为口播稿子。若想加上自己的特征,可在提示词里写个性化台词。需注意,DeepSeek R1 基础版本限额使用,可在专业版手动接入。 此外,ChatGPT 无法直接抓取网页内容,其限制原因是不会直接抓取 URL 内容,仅依赖内部知识库或通过必应搜索,且必应搜索结果(尤其中文)往往不够准确。解决方法是手动复制网页内容,粘贴为 Markdown 或纯文本后再提交给 ChatGPT,解析效果更佳。 宝玉日报中提到,通过飞书快捷方式+DeepSeek R1 可实现自动翻译、改写、图片 OCR、AI 抓取等,提高工作效率。关键流程为从 URL 抓取内容➝DeepSeek R1 翻译➝自动改写文章风格➝生成高质量文章。还有更多工作流,如文本翻译、图片翻译、AI 生成爆款标题,飞书模板可直接使用。Deep Research 提示词模板有三大核心要素,包括背景信息(XML 包裹)、任务要求(分析主题、检索范围)、输出格式(语言、表格),适用于生成深度报告、信息检索、数据整理等场景。对于处理大规模代码,可粘贴几千行代码并用 XML 包裹,若让 AI 编写代码,可生成代码、搜索相关代码库。ChatGPT 免费用户可用 GPT4o mini 语音版。
2025-03-12
我想学习自动抓取网络信息
以下是关于自动抓取网络信息的相关内容: Firecrawl Extract 是一个能够实现自动抓取网络信息的工具。它具有以下特点: 1. 只需文字提示,即可爬取任意网络数据。 2. 通过自然语言提示,能轻松将网页内容转换为结构化数据,无需手动写脚本。 3. 支持复杂数据提取,例如联系人信息、任务描述、动态价格等。 4. 兼容多语言与国际网站,能够抓取 JavaScript 渲染的动态页面内容。 5. 提供 API 集成,支持大规模数据处理,可提取数千个结果,解决上下文限制问题。 相关链接: 1. 2.
2025-03-07
抓取视频文字的浏览器插件
以下是为您找到的与抓取视频文字的浏览器插件相关的信息: 视频内容分析模型,上传视频后可以生成视频内容的文本描述。来源: 一个浏览器插件,可以用 AI 读取您的邮件内容并帮您生成回复。来源: 此外,还有关于其他插件的相关内容: 适用于 Google 表格的无代码机器学习插件。来源: 对 Chat GPT 二次封装的产品,可以访问互联网数据以及支持直接生成图片。来源: Luma Imagine 3D 一种用文本创建 3D 的新方法。来源: RF Diffusion 模型,帮助设计蛋白质结构的扩散模型。来源: PubMed GPT:生物医学文本的特定领域大型语言模型。来源: 还有关于制作插件的一些信息: 如果报错、解析结果不对,可以点击 Raw Response,会看到报错或者返回值,再根据返回值调整配置输出参数。 复制对应的链接到浏览器地址栏,打开查看。 有些文字显示不出来,是因为字体包中没有这个字,所以就会导致显示不出来。这个暂时没什么办法。除非找到更加全面的字体包。 点击完成,就成功的创建了一个插件。 另外,有一款 AI 浏览器插件,目标是实现输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。为了达到这一效果,大模型对话产品需要完成以下关键步骤: 1. 网页爬取:自行访问链接,解析网页内容。 2. 内容总结:根据提示词要求,提炼标题、摘要、要点等信息。 3. 二维码生成:利用 qrcode.js 库,将 URL 转换为二维码图片。 4. 卡片样式生成:基于特定模板设计要求(暂不考虑自适应样式主题),将卡片内容、二维码组合为精美的分享卡片。 值得一提的是,通过实践探索,发现了新的词生卡 Prompt 组织方法:把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”、“字体规范”、“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式有 3 个显著优势: 1. 模型通用性:采用纯 Markdown 格式编写,不依赖特定模型的特性,可以适配不同的大语言模型。 2. 提示简易性:提示词结构清晰易读,便于自然语言编写,降低使用门槛。 3. 生成稳定性:通过清晰的模块划分和自然语言描述,避免了指令间的相互干扰,提高了 AI 生成样式代码的准确性和一致性。
2025-02-24
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
python数据分析
以下是关于 Python 数据分析的相关内容: BORE 框架与数据分析: 自动驾驶产品经理的工作中会涉及大量数据分析,数据分析是一门独立完整的学科,包括数据清洗、预处理等。从工具和规模上,写 Excel 公式、用 Hadoop 写 Spark 算大数据等都属于数据分析;从方法上,算平均数、用机器学习方法做回归分类等也属于数据分析。 用 ChatGPT 做数据分析的工具: 1. Excel:是最熟悉和简单的工具,写公式、Excel 宏等都属于进阶用法,能满足产品的大部分需求。ChatGPT 可轻松写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如 pandas、numpy 用于数据分析,seaborn、plotly、matplotlib 用于画图,产品日常工作学点 pandas 和绘图库就够用。一般数据分析的代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 实践:用 Kaggle 的天气数据集绘制气温趋势折线图与月降雨天数柱状组合图: 1. 项目要求:绘制气温趋势折线图+月降雨天数柱状组合图,即双 y 轴的图形。 2. 打开数据集,分析数据:发现关键表头与数据可视化目的的关联。 3. 新建 Python 文件,开始编程:包括调用库、读取数据、数据处理、创建图表、添加标题与图例、保存并显示图形等步骤。 4. 试运行与 Debug:发现左纵坐标数据有误,重新分析数据集并修改代码,最终实现可视化目的。 关于 ChatGPT 的预设 prompt: 在特定的设置下,当发送包含 Python 代码的消息给 Python 时,它将在有状态的 Jupyter 笔记本环境中执行,有 60 秒的超时限制,'/mnt/data'驱动器可用于保存和持久化用户文件,本次会话禁用互联网访问,不能进行外部网络请求或 API 调用。
2025-04-14
数据集去哪下载
以下是一些数据集的下载途径: 对于微调 Llama3 的数据集,获取及原理可参考文档:。 鸢尾花数据集下载请点击链接:https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html 。 天气数据集下载请点击链接:https://www.kaggle.com/datasets/muthuj7/weatherdataset 。建议创建一个文件夹,将下载下来的数据集放入文件夹中。
2025-04-14
基于多维评价数据,使用大模型生成个性化的家庭教育方案的可靠性高吗?
基于多维评价数据使用大模型生成个性化的家庭教育方案具有一定的可靠性,但也存在一些限制。 一方面,大模型在教育领域展现出了强大的能力。例如,能够为教师提供源源不断的真题库和错题练习库,模仿各类考试题型有模有样。在作文批改评分方面,如 GLM 模型,具备好词好句识别评测、作文综合评价评分等功能,能够综合考虑文章的多个维度给出评价,提供个性化反馈,保证评分的一致性等。 另一方面,也存在一些挑战。对于高学段理科等复杂领域,大模型的表现可能有限。在解读学生作文中的深层次含义,如隐喻、双关等修辞技巧,以及涉及特定文化背景和历史知识的内容时,仍存在一定难度。 然而,只要提示词到位、示例清晰,大模型在生成个性化家庭教育方案方面具有很大的潜力,可以为家长和孩子提供有价值的参考和帮助。但不能完全依赖大模型,还需要结合人工的判断和调整。
2025-04-13
如何利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】
利用 AI 赋能【数据分析在企业自媒体营销中的应用综述(以抖音、小红书平台为例)】可以参考以下方法: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以快速识别关键信息,如受欢迎的产品、价格区间和销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:采用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:使用 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:依靠 AI 预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:利用 AI 分析不同支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 此外,还可以参考以下具体案例: 赛博发型师:基于 AI 技术为用户提供个性化的发型设计服务,通过分析用户面部特征、个人风格和偏好,自动生成发型设计方案,用户可上传照片,系统分析后生成详细报告和效果图,报告可存档至飞书文档供专业发型师复核评估。 营销文案创作专家深度版:专为企业营销团队等设计,提供从文案框架创作到生成的一站式服务,通过分析产品信息等挖掘痛点和卖点,生成营销文案,并提供营销数据分析服务以优化策略和提高协作效率。 抖音商家客服(C 端用户)/抖音带货知识库工具(B 端商家):作为 AI 客服系统建设助手,帮助企业实现一站式 AI 客服解决方案。 在实际操作中,还可以参考以下经验: 飞书、多维表格、扣子相关应用优化及自媒体账号分析演示分享:包括直播课程相关内容,优化社区文档问题,介绍技术栈选择,强调扣子、多维表格及 AI 字段捷径结合做数据分析的优势,现场演示账号分析效果,展示同步数据的自动化流程。 高效数据分析应用搭建实操讲解:先介绍数据在多维表格执行无二次请求的优势,接着进行技术实操,从新建“数据 AI 高效数据分析”应用开始,讲解抓数据、同步数据前设置变量等步骤,包括搭建界面、做工作流、保存变量等操作,可在市场选插件。 高雁讲解数据处理及多维表格操作过程:进行操作演示与讲解,包括将用户信息发送到多维表格、调整界面显示、处理按钮点击事件等操作,还讲解了批处理、代码节点等内容。
2025-04-13
现在做数据分析比较厉害的ai是什么
目前在数据分析方面表现较为出色的 AI 工具包括智谱清言、Open Interpreter 等。 AI 在数据分析中具有以下优势: 1. 降低入门门槛:过去学习数据分析需要掌握编程语言和专业知识,现在通过 AI 工具,门槛大大降低。 2. 规范的分析流程:对于初学者来说,AI 直接做的数据分析比他们自己第一次做的更好,其规范化流程更严谨,结果更可靠。 3. 自动化处理:会自动进行模型选择以匹配数据,还能根据 log 检查错误并改正源代码。 4. 减少重复性工作:重复性劳动可先交给 AI 做,人类用户只需做验证和检查结果。 实际应用的工具方面,GPT4 可以帮助建立和评估机器学习模型,Claude 等大语言模型可以进行数据分析和可视化,Open Interpreter 等工具可以辅助编程和数据处理。 使用时的建议包括:对 AI 结果要进行严格验证,不要完全依赖 AI,要保持独立思考,对 AI 的能力边界有清晰认识,合理使用以提高工作效率。同时,AI 应被视为辅助工具而非完全替代品,人类在整个过程中仍起主导作用和具有判断力。
2025-04-11
用AI做数据分析
以下是关于用 AI 做数据分析的相关内容: 流程: 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。 工具和成功案例: 大概思路是这样: 1. 提供大模型可以访问的数据源或者上传数据表格。 2. 通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出。 3. 观察生成结果,迭代和优化提示词,最终满意后导出结果。 相关问题和技巧: 1. 关于“大模型幻觉”,目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。 2. 结构化思维提高对话能力,在 AGI 搜索结构化三个字,有相关文章。上下文 token 长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。 案例分析: 以“用 ai 做数据分析,和爆款卖点分析”为例,这一创意将 AI 技术与商业洞察深度融合,展现了数据驱动决策的前瞻性。通过 AI 对海量用户行为、评论、竞品数据的挖掘,不仅能快速定位爆款产品的共性特征(如高频关键词、用户情感倾向),还能发现传统方法难以捕捉的潜在需求(例如隐藏的消费场景或未被满足的功能痛点)。尤其是结合时序分析预测市场趋势,为企业提供了动态调整产品策略的敏捷性,真正实现了从“经验决策”到“智能决策”的跨越。若想进一步突破,可考虑以下优化方向: 1. 多模态数据融合:除文本数据外,整合图片/视频的视觉分析(如通过 CV 技术识别爆款产品的外观设计共性),或结合语音数据(如直播带货中的实时用户反馈),构建更立体的卖点模型。 2. 因果推理增强:当前 AI 多聚焦相关性分析,可引入因果发现算法(如 DoWhy 框架),区分“真实卖点”与“伴随现象”。例如某款手机壳销量高是因为颜色,还是因与热门手机型号捆绑销售? 3. 个性化适配引擎:根据企业自身资源禀赋(供应链能力、品牌定位)对 AI 建议进行权重优化。例如小型厂商可优先推荐“低改造成本的高需求卖点”,避免直接对标头部品牌的资源密集型方案。 4. 对抗性验证机制:构建虚拟消费者模拟环境,对 AI 提出的卖点进行 A/B 压力测试,提前评估市场风险,避免出现“数据过拟合导致的伪创新”。
2025-04-11