Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是微调

Answer

微调(Fine-tuning)是一种迁移学习技术,常用于深度学习中。

首先,有一个在大量数据上预训练过的模型,它已学会一些基本的模式和结构,例如在自然语言处理任务中学会基本的语法和单词的语义。

然后,在特定的任务数据上继续训练这个模型,使其适应新的任务。

以下是一些例子帮助您更好地理解:

  • 情感分类:先使用大量语料库预训练模型,再用标注过的电影评论继续训练,使其学会判断评论的情感。
  • 图像分类:类似的方式在图像相关任务中应用。

微调可带来诸多收益,如获得比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省 Token、更低的延迟请求。

GPT-3 在大量文本上预训练后,微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调涉及准备和上传训练数据、训练新的微调模型、使用微调模型等步骤。

在大型语言模型中,微调阶段是将互联网文档的格式转换为问答形式,类似于有用的助手。预训练阶段主要积累知识,微调阶段则是所谓的对齐。

Content generated by AI large model, please carefully verify (powered by aily)

References

什么是Fine-tuning

"Fine-tuning",也叫做微调,是一种迁移学习技术,常用于深度学习中。这种方法的基本思路是:首先,我们有一个预训练的模型,这个模型已经在大量的数据上训练过,已经学会了一些基本的模式和结构(比如在自然语言处理任务中,预训练模型可能已经学会了基本的语法和单词的语义)。然后,我们再在特定的任务数据上继续训练这个模型,使其适应新的任务,这就是所谓的"fine-tuning"。下面是两个例子,希望能帮助你更好地理解这个概念:例子1:情感分类假设我们正在构建一个模型,用于判断电影评论是积极的还是消极的。我们可以先使用大量的语料库(比如维基百科)预训练一个模型,使其学会基本的语法和单词的语义。然后,我们收集一些标注过的电影评论,其中一部分评论是积极的,一部分评论是消极的。我们再在这些评论上继续训练模型,使其学会判断评论的情感。这就是一个fine-tuning的过程。例子2:图像分类

微调(Fine-tuning)

通过提供以下内容,微调可让您从API提供的模型中获得更多收益:1.比即时设计更高质量的结果2.能够训练比提示中更多的例子3.由于更短的提示而节省了Token4.更低的延迟请求GPT-3已经在来自开放互联网的大量文本上进行了预训练。当给出仅包含几个示例的提示时,它通常可以凭直觉判断出您要执行的任务并生成合理的完成。这通常称为“小样本学习”。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例。这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及以下步骤:1.准备和上传训练数据2.训练新的微调模型3.使用您的微调模型

文章:Andrej Karpathy 亲授:大语言模型入门

因此,我们现在交换数据集,并根据这些问答文档进行训练。而这个过程就叫做微调。一旦你这样做了,你就获得了我们所说的助理模型。所以这个助理模型现在订阅了新的训练文档的形式。例如,如果你给它一个问题,比如,“你能帮我处理这段代码吗?好像有一个错误。print(“hello world).”尽管某个问题并未包含在训练集中,经过微调的模型仍然知道它应该以有助于解答此类问题的助手的形式进行回答,并且它能够做到这一点。因此,模型会从左至右、从上至下地逐字采样,生成的所有单词均是对该查询的响应。这些模型能够将其格式转变为当前有用的助手,这是一个值得关注的现象,同时也是一种基于经验的、尚未完全理解的现象。这是因为尽管它们在微调阶段已经接触到了大量相关文档,但它们仍能够访问并以某种方式利用在预训练阶段积累的全部知识。到目前为止的总结粗略来说,预训练阶段是在互联网上进行的大规模训练,主要关注知识的积累,而微调阶段则是关于所谓的对齐,即将互联网文档的格式转换为问答形式,类似于有用的助手。这两个阶段是获取像ChatGPT这样的模型的两个主要部分。

Others are asking
热点的大模型微调蒸馏工具有哪些
以下是一些热点的大模型微调蒸馏工具: FLUX.1:包括 FLUX.1(可商用,为本地开发和个人使用定制,生成速度快,内存占用小,在 Apache 2.0 许可下公开提供,支持在 Replicate、fal.ai 和 Comfy UI 等平台使用,且支持用户根据自己数据集微调)。其训练参数高达 120 亿,在图像质量、提示词跟随等多方面超越流行模型,工作原理基于混合架构,结合变换器和扩散技术。 基于阿里云 PAI 平台:可复现 R1 蒸馏及蒸馏训练模型过程。部署 32b 的蒸馏模型展示效果,包括模型部署(如选中模型卡片后的操作、选择 vLLM 部署、涉及竞价系统等)、蒸馏数据获取(在本地 python 环境或 notebook gallery 建立实例执行代码获取蒸馏数据集)等。 DeepSeek:PaaS 平台支持多机分布式部署,满足推理性能要求,能一站式完成模型蒸馏。可登录 Pad 控制台通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价部署,部署后可在模型在线服务 EAS 查看状态。还介绍了模型 API 调用、服务关停、蒸馏概念、应用场景及部署实操等。
2025-04-13
deepseek v3微调
以下是关于 Deepseek V3 微调的相关信息: 云舒文章总结卡 2.0 提示词全面支持 Deepseek V3,效果媲美 Claude3.7。V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号。提示词复制链接:。横版为 1080 x 800 卡片提示词,竖版为 750 x 不限高卡片提示词。 各平台均需下载 html 文件,打开后才能查看真实效果,平台自带预览因兼容性问题无法正常展示效果。Claude 使用平台包括 Claude3.7 官网、API、Cursor,使用时需要下载为 HTML 文件打开查看效果。Deepseek 使用平台包括 Deepseek 官网、API(V3 需要为 0324 更新的版本),Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 关于智能纪要,会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面。 北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调,DeepSeekV3 降至原价的 50%。
2025-04-12
有哪些针对CoT能力的微调工具
以下是一些针对 CoT 能力的微调工具: 1. Selfconsistency CoT:使用手动设计的 Prompt 生成采样一组不同的推理路径,再通过“多数投票”找到推理步骤中“最一致”的路径,使用这条解码路径驱动原始的贪心解码方式来提示 CoT 性能。 2. MMCoT:侧重使用微调方法嵌入 CoT,通过将语言和图像合并在一个包含推理生成与答案推理的两阶段的框架中,使用微调大模型赋予输入多模态 CoT 的能力。 3. GoTInput 方法:通过对 CoT 生成的思维图进行抽取构建三元组,并使用 GNN 将文本、图像与 CoT 统一,从而生成包含 CoT 信息的最终答案。 4. VCoT:解决了一个输出多模态的问题,通过以生成图片的“标题”以及识别核心关注点作为图像生成的启动过程,通过递归的方式填充图像信息,从而实现输出多模态。 此外,在将 DoT 扩展到预训练的扩散语言模型 Plaid 1B 并在更复杂的推理任务上进行评估时,自回归模型和扩散模型在使用 CoT 或 DoT 进行微调时都显示出显著提高的性能。在微调 Plaid 1B 时,也探索了几种替代方案。 在强化学习驱动的合成数据生成与模型优化流程中,也涉及到 CoT 的相关应用和优化,如初始 CoT 生成、CoT 存储等。
2025-04-12
本地部署大模型,如何微调建立本地知识库
以下是关于本地部署大模型并微调建立本地知识库的详细步骤: 一、使用 AnythingLLM 进行本地知识库搭建 1. 安装 AnythingLLM 安装地址:https://useanything.com/download 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型 第二步:选择文本嵌入模型 第三步:选择向量数据库 2. 构建本地知识库 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,提供了 Chat 模式(大模型根据训练数据和上传文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 二、张梦飞的全本地部署教程 1. 部署大语言模型 下载并安装 Ollama 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 下载 qwen2:0.5b 模型 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 三、智能纪要中的相关内容 在智能纪要中,许键介绍了模型 API 调用方法与知识库创建,包括获取 API key 位置及调用设置,详细讲解了创建 Rag 应用(知识库)流程,如上传非结构化文件、数据解析、切分段落等操作,并回答了诸多问题。同时还涉及工作流创建、模型能力及相关问题的探讨,以及通义千问相关应用及明天课程安排交流等内容。 总之,本地部署大模型并建立本地知识库需要按照上述步骤进行操作和配置,同时不断实践和探索,以达到理想的效果。
2025-04-10
如何做 deepseek 微调
要进行 DeepSeek 微调,以下是一些相关的知识和步骤: 1. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 2. 本地部署介绍:如果拥有云服务器,可以进行本地部署,了解满血版本地部署的实际情况。 3. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 平台服务差异:了解 DLC、DSW 和 EAS 等模型部署平台服务的差别。 5. 对于微调的全过程,建议阅读 Unsloth 笔记本和 HuggingFace 的《如何微调开放式 LLMs》,也可以使用《如何在一小时内阅读论文》作为指南。 6. 更加完善的训练说明,可直接阅读官方论文:DeepSeekAI《DeepSeekR1:Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》https://arxiv.org/html/2501.12948
2025-04-08
怎么本地部署ai模型,并进行微调
以下是本地部署 AI 模型并进行微调的主要步骤: 1. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源:确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础:可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型:将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 此外,关于本地部署还有以下相关内容: 如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 PaaS 平台支持多机分布式部署,满足推理性能要求,使用独占资源和专有网络,能一站式完成模型蒸馏。 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 介绍了模型 API 的调用方法,包括查找位置、获取 token 等,强调使用后要及时停止或删除服务以避免持续付费。 总的来说,部署和训练自己的 AI 模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2025-03-27