Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是 AI,能否用最简单的一句话解释

Answer

AI 是某种模仿人类思维,可以理解自然语言并输出自然语言的东西,是让计算机或机器能像人类一样思考和学习的技术,其生态位是一种似人而非人的存在。例如,像 chatGPT 这样的产品就是由致力于 AGI 的公司 OpenAI 研发的一款 AI 技术驱动的 NLP 聊天工具。

Content generated by AI large model, please carefully verify (powered by aily)

References

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

AI是什么?作为一个不具备理工科背景的文科生,要搞清楚“ AI ”其实是一件很困难的事情(什么Agents、AIGC、LLM,什么符号主义、什么语义规则傻傻分不清楚),所以最好的处理方式是就把AI当成一个黑箱,我们只需要知道AI是某种模仿人类思维可以理解自然语言并输出自然语言的东西就可以。至于AI如何去理解,其实不重要。于是我们可以发现驱动AI工具和传统道教的驱神役鬼拘灵遣将有奇妙的相似之处,都是通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成自己预设的效果,且皆需要面对工具可能突破界限(发疯)的情况。当然,不熟悉道教的朋友可以把这东西理解成某种可以理解人类文字但不是人的魔法精灵/器灵之类的东西——总之,AI的生态位就是一种似人而非人的存在。AI技术再爆炸一万倍,AI的生态位也还是一种似人而非人的存在。由此,我们可以从人类各个文明的传说中,从那些古老哲人们的智慧里寻找到当下和AI、神、精灵、魔鬼这种似人非人存在相处的原则:

AIGC常见名词解释(字典篇)

chatGPT:是由致力于AGI的公司OpenAI研发的一款AI技术驱动的NLP聊天工具,于2022年11月30日发布,目前使用的是GPT-4的LLM。额!~ chatGPT我听过,也知道是啥,但你这个解释我直接给我干懵了,套娃呢,解释藏我不认识的单词是不!~ AI:人工智能(Artificial Intelligence)AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统NLP:自然语言处理(Natural Language Processing),就是说人话LLM:大型语言模型(Large Language Model),数据规模很大,没钱你搞不出来的,大烧钱模型。这段解释chatGPT的释义,一句话就把关于AIGC的几个常见名词都涵盖了,不愧是去年火到我卖地瓜的二姨都知道的“鸡屁屉”。一个字!绝!

当AI走进小学课堂(全套课程设计)

设计思路:要和三年级的孩子对话,要用学生能理解的语言,旨在激发学生的兴趣,引起学生的好奇心即可。在课堂上,先和学生互动,先听听他们口中的AI,再引出我们的概念。内容:大家好,今天我们要来聊聊一个非常酷的话题——人工智能,简称AI。你们可能在电视上、电脑游戏里或者是电影中见过AI。那么,人工智能到底是什么呢?简单地说,就是让计算机或机器能像我们人类一样思考和学习的技术。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
AI术语解释
以下是一些常见的 AI 术语解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。属于技术范畴。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。属于通识范畴。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。属于技术范畴。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。属于技术范畴。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。属于通识范畴。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。属于技术范畴。 TPU(张量处理单元):谷歌开发的一种微处理器,专门用于加速机器学习工作负载。属于技术范畴。 Training Data(训练数据):用于训练机器学习模型的数据集。属于技术范畴。 Transfer Learning(迁移学习):机器学习中的一种方法,其中对新问题使用预先训练的模型。属于技术范畴。 Validation Data(验证集):机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。用于调整模型的超参数(即架构,而不是权重)。属于技术范畴。 Knowledge Distillation(数据蒸馏):数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。属于技术范畴。 RAG(检索增强生成):检索增强生成。属于技术范畴。 Forward Propagation(前向传播):在神经网络中,输入数据被馈送到网络并通过每一层(从输入层到隐藏层,最后到输出层)以产生输出的过程。网络对输入应用权重和偏差,并使用激活函数生成最终输出。属于技术范畴。 Foundation Model(基础模型):在广泛数据上训练的大型 AI 模型,旨在适应特定任务。属于技术范畴。 GAN(通用对抗网络):一种机器学习模型,用于生成类似于某些现有数据的新数据。使两个神经网络相互对抗:一个“生成器”,创建新数据,另一个“鉴别器”试图将数据与真实数据区分开来。属于技术范畴。 Generative AI/Gen AI(生成式 AI):AI 的一个分支,专注于创建模型,这些模型可以根据现有数据的模式和示例生成新的原创内容,例如图像、音乐或文本。属于通识范畴。 GPU(图形处理单元):一种特殊类型的微处理器,主要用于快速渲染图像以输出到显示器。在执行训练和运行神经网络所需的计算方面也非常高效。属于产品范畴。
2025-04-18
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
AI名词解释
以下是一些常见的 AI 名词解释: Compute:用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN:卷积神经网络,一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。此类模型通常用于图像识别任务。 Data Augmentation:通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent:机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning:一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems:人工智能技术的应用,为特定领域的复杂问题提供解决方案。 Agents:智能体,一个设置了一些目标或任务,可以迭代运行的大型语言模型。这与大型语言模型(LLM)在像 ChatGPT 这样的工具中“通常”的使用方式不同。在 ChatGPT 中,你提出一个问题并获得一个答案作为回应。而 Agent 拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互。 ASI:人工超级智能,尽管存在争议,但 ASI 通常被定义为超越人类思维能力的人工智能。 Attention:在神经网络的上下文中,注意力机制有助于模型在生成输出时专注于输入的相关部分。 Bias:AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot:一种计算机程序,旨在通过文本或语音交互模拟人类对话。聊天机器人通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP:对比语言图像预训练,由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 TPU:张量处理单元,谷歌开发的一种微处理器,专门用于加速机器学习工作负载。 Training Data:用于训练机器学习模型的数据集。 Transfer Learning:机器学习中的一种方法,其中对新问题使用预先训练的模型。 Validation Data:机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。它用于调整模型的超参数(即架构,而不是权重)。 Knowledge Distillation:数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。数据蒸馏技术在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。它可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。 RAG:检索增强生成。
2025-04-18
通俗易懂地解释一下什么叫AGI,和我们平常理解的AI有什么区别
AGI 即通用人工智能,指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 与平常理解的 AI 相比,平常的 AI 往往是针对特定领域或任务进行设计和优化的,例如下围棋、图像识别等。而 AGI 涵盖了更广泛的认知技能和能力,不仅限于特定领域,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等,并且要求这些能力达到或超过人类水平。 在 AI 发展历程中,早期的研究有对智能的宏伟目标追求,但很多研究进展是狭义地关注明确定义的任务。直到 2000 年代初,“通用人工智能”(AGI)这一名词流行起来,强调从“狭义 AI”向更广泛的智能概念转变,回应了早期 AI 研究的长期抱负和梦想。 例如,GPT3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型则没有像 GPT3 这样连贯回应的能力。
2025-03-22
最值得了解的AI专业名称,及解释
以下是一些值得了解的 AI 专业名称及解释: 1. 人工智能(Artificial Intelligence,简称 AI):一种目标,让机器展现智慧。 2. 生成式人工智能(Generative AI,简称 GenAI):一种目标,让机器产生复杂有结构的内容。 3. 机器学习:一种手段,让机器自动从资料中找到公式。 4. 深度学习:一种更厉害的手段,类神经网络 非常大量参数的函数。 5. 大语言模型(Large Language Models,简称 LLMs):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:一个应用实例,通过投喂大量资料预训练后,会通过聊天玩“文字接龙游戏”。英文解释:Chat 聊天,G:Generative 生成,P:Pretrained 预训练,T:Transformer 类神经网络模型。 7. AIGC(Artificial Intelligence Generated Content):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。 这些概念之间存在一定的关系,AIGC 技术可以用于多种应用,ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例。对于新手学习 AI,建议先了解 AI 基本概念,如阅读相关的入门文章和熟悉术语。可以在特定的学习路径中找到为初学者设计的课程,通过在线教育平台按自己节奏学习。选择感兴趣的模块深入学习,比如掌握提示词技巧。实践和尝试很关键,可使用各种产品做出作品,并体验如 ChatGPT 等 AI 产品。
2025-03-11
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
我是一名AI古诗词视频创作者,我想教大家如果用AI软件将古诗词的内容用视频形式表现出来,请帮我写一个教学文档,要求内容丰富,从简单到复杂,从入门到深层思考和学习,包括提示词怎么写,提示词模板,提示词举例等
以下是一份关于如何用 AI 软件将古诗词内容以视频形式表现出来的教学文档: 一、简单入门 如果是简单的图,找原图直接写提示词即可。 二、复杂图片处理 1. 图片分模块 对于复杂部分的图,把长图分多个模块。例如,将一张图分成 4 个模块。 2. 抠出背景图 智能抠图。用工具把要动的内容去除掉,用 AI 生成图片部分。如果有水印,可以把图片向下拓展一部分,然后截掉。 3. 绿幕处理前景图 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 前景图动态生成视频 用 AI 视频生成工具写入提示词让图片动起来。有很多工具可供选择,如即梦、海螺、混元等。不停尝试抽卡即可。 5. 生成视频去掉背景 用剪映把抽卡合格的视频放在去掉内容的背景图片上,视频的背景用色度抠图调整去掉。多个视频放在背景图片,一起动即可。 三、提示词相关 1. 文案生成 工具:DeepSeek 操作:打开 DeepSeek 网站(https://chat.deepseek.com/ ),输入提示词。例如:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’”可以根据自己的内容自行调整文案和字数要求。点击生成,等待 DeepSeek 输出 3 条文案。从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 工具:即梦 AI 操作:打开即梦 AI 网站(https://jimeng.jianying.com/aitool/image/generate ),输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词。调整生成参数(如风格、细节等),点击生成。预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。下载最终的人物形象图。 四、其他注意事项 1. 指定视觉细节 包括颜色、照明、相机角度和风格等任何视觉元素的描述。提供的细节越多,输出就越接近您的愿景。 2. 提及所需长度和格式 如果您对特定的长度(以秒或分钟为单位)或格式(宽高比、分辨率)有想法,请提及。这对于 AI 生成符合您要求的内容至关重要。 3. 概述音频偏好 如果您的视频需要特定的音频元素,如背景音乐、旁白或音效,请详细描述。指定您是希望 AI 生成这些元素还是您自己提供。 4. 考虑道德和版权准则 确保您的提示符合道德标准和版权法。避免请求侵犯版权或涉及没有适当背景的敏感主题的内容。 请根据您的具体需求和所使用的视频 AI 工具的能力调整模板和示例。记住,输出的质量在很大程度上取决于您通过提示传达愿景的效果。
2025-04-08
将照片改成卡通效果用什么ai会比较简单易操作
以下几种 AI 工具可以将照片改成卡通效果,操作相对简单易操作: 1. ChatGPT 4o:支持上传照片后直接生成“吉卜力卡通风格”图像,提示词只需简单写“吉卜力风格化”即可,后续会话中只需上传图片,无需重复输入提示词。参考链接:
2025-04-08
有哪些AI代码可生成的简单好玩的东西
以下是一些通过 AI 代码可生成的简单好玩的东西: 1. 小游戏: 贪吃蛇游戏:在 Trae 上,通过快捷键打开 AI 聊天窗口,点击“Builder 模式”,输入“帮我创建一个贪食蛇的游戏”,等 60 秒,AI 生成代码,点“运行”。 赛车游戏:把刚刚创建的贪吃蛇游戏代码删掉,然后输入“帮我创建一个赛车游戏”,等 60 秒,AI 生成代码,点“运行”。 2. 待办事项清单: 直接在对话框输入“生成一个待办事项清单的应用”。 上传图片给 AI,并告诉它“我要一个与图片类似的待办事项清单”。 3. 任务清单应用:在输入框中输入“使用 Web 技术开发一个任务清单应用”。 4. 根据 UI 设计图自动生成项目代码:从站酷上找一张设计图,输入提示“使用 html 技术实现如图大屏页面”,然后根据需要让 Trae 进行调整。 从实际体验来看,Trae 具有高效的代码生成能力、多技术栈支持和动态调整潜力。无论是小游戏、待办事项清单还是其他应用,都能在短时间内生成完整框架,代码结构清晰且功能齐全。
2025-03-27
有哪些AI工具可以获取上市公司年报数据。我是小白,推荐简单好学的工具。
以下是一些可能获取上市公司年报数据的 AI 工具及相关信息: AI 智库:提供了上市公司的相关排名和产品信息,如百度、美图公司、阿里巴巴、昆仑万维等公司的情况。 余一的相关文档:包括《从 2023 年报,看中国上市公司怎么使用生成式 AI》等,可通过相关链接获取详细内容。 对于小白来说,您可以先尝试从这些资源中获取所需的上市公司年报数据。
2025-03-25
什么AI可以帮忙简单处理图片
以下几种 AI 可以帮忙简单处理图片: 1. SD(StableDiffusion):启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,能在显存不够的情况下放大图片。可对老照片进行上色、高清化处理,但处理复杂照片时可能有难度,需要调整策略,如放弃人物服装颜色指定,只给场景方向,加入第二个 controlnet 控制颜色等。 2. OpenAI:可以利用代码解释器中的 Python 以图片流的方式处理图片,但 Python 因缺少包不能直接处理图片。 3. 扣子:整个工作流程包括用户输入关键词,大模型制作金句,根据金句生成画面描述,结合描述和关键词使用扣子官方插件生成图片,再使用图像流方式结合金句和图片。 4. MJ(Midjourney):加上简单相机参数、写实风格,使用 MJ v 6.0 绘图,可根据需求调整图片比例。 5. InsightFaceSwap:用于处理图片的换脸操作,如输入“/saveid”和“/swapid”等指令上传图片进行处理,但对老外的脸识别度较好,效果可能因情况而异。 处理图片时还可能涉及到 PS 等工具进行裁剪、拼接等操作。
2025-03-21
如何一句话生成视频
要一句话生成视频,可参考以下步骤: 1. 进行英语文本句子切割:在【4】卡片 html 代码生成节点后面接一个代码节点,【输入】配置中参数名设为【input】,变量值选【2】卡片参数生成节点输出的【zhengwen】,代码填写相应内容,【输出】配置中参数名设为【juzi】,变量类型为【Array<String>】。 2. 逐句生成视频:在【7】英语文本句子切割节点后面加入批处理节点,【批处理设置】中的【并行运行数量】填 2(太高会报错,1 3 比较妥),【输入】配置中参数名设为【input】,变量值选【7】英语文本句子节点中输出的【juzi】。 3. 单句画面生成:批处理里面的第一个节点接图片生成节点,【比例】选 16:9,【输入】配置中参数名设为【juzi】,变量值选【8】逐句生成视频这个批处理节点的【input】,填写【提示词】。 4. 单句发音:在【9】单句画面生成节点后面接一个语音转文本节点,【输入】配置中参数名设为【text】,变量值选【8】逐句生成视频这个批处理节点的【input】。 5. 单句高亮 Html 代码:在【10】单句发音节点后面接一个大语言模型节点,【模型】选【豆包 1.5 pro 32k】,【输入】里面填参数名【juzi】,变量值为【8】逐句生成视频输入参数【input】,参数名【tupian】,变量值为【9】单句画面生成节点的输出参数【data】,参数名【html】,变量值为【4】卡片 Html 代码生成节点的输出参数,填写【系统提示词】和【用户提示词】。 6. Html 代码转图片:在【11】单句高亮 html 代码节点后面接 html 代码转图片节点(这个插件在【05】讲过),【输入】配置中参数名设为【htmlcontent】,变量值为【11】单句高亮 html 代码节点的输出参数【output】。 7. 单句视频生成:在【12】高亮 Html 代码转图片节点后面接视频和合成节点(这个插件在【06】讲过),【输入】配置中参数名设为【api_token】,变量值选【06】里面讲过的 api_token,参数名【img_url】,变量值选【12】高亮 Html 代码转图片节点输出的参数【imageUrl】,参数名【mp3_url】,变量值选【10】单句发音节点输出的参数【url】。
2025-04-01
一句话阐述推理类模型的原理
推理类模型的原理主要包括以下方面: OpenAI 的推理模型通过强化学习进行训练,以执行复杂推理。此类模型在回答前会思考,能产生长链的思维过程。通过训练,它们学会优化思考过程、尝试不同策略并识别错误,从而遵循特定指南和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 例如 OpenAI o1 这样的推理模型基于链式思维,逐步推理问题的每个步骤来得到答案。 还有一些概率预测的快速反应模型,通过大量数据训练来快速预测可能的答案。
2025-03-18
一句话阐述工作流的原理
工作流的原理通常包括以下几个方面: 1. 由多个节点构成,节点是基本单元,如大语言模型、自定义代码、判断逻辑等。默认包含起始的 Start 节点和末尾的 End 节点。 2. 不同节点可能需要不同的输入参数,包括引用前面节点的参数值和自定义的输入值。 3. 一些工作流通过特定插件实现特定功能,如 SDXL Prompt Styler 插件结合 ControlNet 实现图片风格转化,其原理是在 prompt 中加入预设好的风格关键词组合。 4. 对于复杂任务场景,通过对插件、大语言模型、代码块等功能的可视化组合,实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。 5. 像生成图文短句的工作流,会包含多个步骤,如大模型生成标题、通过代码节点获取标题、生成简介、生成文案、归纳总结、传递给图像流等,并对图像流进行提示词优化和文生图等操作。
2025-03-18
一句话阐述ai agent的原理。
AI Agent 的原理主要包括以下几个方面: 1. 其核心通常是大型语言模型(LLM)或大模型。 2. 为 LLM 增加了工具、记忆、行动、规划这四个能力。 工具:如长期记忆,相当于给大模型一个数据库工具来记录重要信息。 记忆:提供长期记忆能力。 行动:将目标进行每一步的拆解,并输出不同的固定格式 action 指令给工具。 规划:在大模型的 prompt 层做逻辑处理,如目标拆解。 3. 目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 4. 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 多重层次:从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。 分布式智能:智能通过多个相互关联的 Agent 共同实现,提高系统的灵活性和鲁棒性。 5. AI Agent 包括 Chain(步骤,可接受输入变量并产生输出变量)、Router(通过判定让 Agent 走向不同的 Chain)、Tool(工具调用)等概念。同时,还需要 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本等)等不同类型的 Agent 协同工作。
2025-03-18
一句话阐述chatgpt的原理。
ChatGPT 的原理可以概括为以下几点: 1. 实质功能是词语接龙,即给定任意长的上文,它会用自己的模型生成下一个词,然后将生成的词与上文组合成新的上文,不断重复生成任意长的下文,此过程称为自回归生成。 2. 训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,让模型学习提问和回答的通用规律,以便在遇到未记忆过的提问时,能利用所学规律生成用户想要的回答,这种举一反三的目的也称为泛化。 3. 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 4. 其神经网络由简单元素组成,基本操作是为每个新单词生成“输入”,然后将其“通过其元素”。 5. 最终,ChatGPT 从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但结果非常类似于人类生成的文本,这表明人类语言及背后的思维模式结构比想象的更简单和具有“法律属性”。同时,ChatGPT 的基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。
2025-03-18
一句话概括WaytoAGI是什么?
“通往 AGI 之路”(WaytoAGI)是一个由热爱 AI 的专家和爱好者共同建设的致力于人工智能学习的中文开源知识库和社区平台。它为学习者提供了系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,内容包括 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,并提供丰富的学习资源,如文章、教程、工具推荐以及最新的行业资讯等。此外,还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。其品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性。同时,WaytoAGI 还孵化了离谱村这一千人共创项目,目标是大家一起用 AI 构建一个离谱世界。
2025-02-21