Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

普通人如何转行AI行业

Answer

普通人转行 AI 行业有以下两个主要选择:

  1. AI 转型:
    • 目前创投圈有“十个 AI 应用里面,五个办公 Agent,三个 AIGC”的说法。产品之间的根本差距不大,关键在于对行业的理解和靠谱交付。
    • 对标移动互联网,现在做 Agent 的公司类似于之前专门做 APP 的公司,且存在比做 APP 更大的机会,即行业加 AI。
    • 行业中的喜茶和金蝶等企业,都制定了 AI 战略或成立了 AI 部门。喜茶拥有过亿的私域用户数据,AI 可用于新零售门店管理、营销销售、客户服务;金蝶作为传统 SaaS 软件拓展新的 AI 业务,属于新零售+AI 与 SaaS+AI。
  2. 在生活中应用 AI:
    • 可以在 WaytoAGI 学习 Agent 知识后,搭建一个 bot 来提高工作或学习效率。
    • 应用 AI 养成自驱自律的习惯,持续学习、自我进化与迭代。
    • 利用 AI 辅助下一代的教育。

此外,随着全球 AI 市场快速升温,新的 AI 应用不断涌现,AI Agent 是当下大模型最激动人心的发展主线。AI Agent 让“人机协同”成为新常态,在其加持下,越来越多的创新将会源自于超级个体和小型组织。在一些领域里,一个人加上足够的 AI 工具,就可以成为一家专业化公司。

Content generated by AI large model, please carefully verify (powered by aily)

References

观点:热爱与行动是通往 AGI 之路

1、第一个选择——AI转型现在创投圈流传这样的说法,“十个AI应用里面,五个办公Agent,三个AIGC”,目前看产品拉不开根本差距,核心是对行业的理解和做好靠谱交付。上次说到对标移动互联网,目前做Agent的公司类似之前专门做APP的公司。和我专门做Agent的朋友聊了下,这里还存在比做APP更大的机会,就是行业加AI。行业玩家如喜茶和金蝶,都制定了AI战略或成立了AI部门。喜茶拥有过亿的私域用户数据,AI可以在新零售门店管理、营销销售、客户服务发挥应用;金蝶则是传统SaaS软件拓展新的AI业务,属于新零售+AI与SaaS+AI。2、第二个选择——在生活中应用AI比如在WaytoAGI学习Agent知识后,搭建一个bot帮我们的工作或学习提效。比如应用AI养成自驱自律的习惯,拥抱变化,持续学习,自我进化与迭代。比如培养下一代的可以用AI来辅助教育,毕竟孩子的未来是无限的。如郝景芳老师所说:

观点:热爱与行动是通往 AGI 之路

1、第一个选择——AI转型现在创投圈流传这样的说法,“十个AI应用里面,五个办公Agent,三个AIGC”,目前看产品拉不开根本差距,核心是对行业的理解和做好靠谱交付。上次说到对标移动互联网,目前做Agent的公司类似之前专门做APP的公司。和我专门做Agent的朋友聊了下,这里还存在比做APP更大的机会,就是行业加AI。行业玩家如喜茶和金蝶,都制定了AI战略或成立了AI部门。喜茶拥有过亿的私域用户数据,AI可以在新零售门店管理、营销销售、客户服务发挥应用;金蝶则是传统SaaS软件拓展新的AI业务,属于新零售+AI与SaaS+AI。2、第二个选择——在生活中应用AI比如在WaytoAGI学习Agent知识后,搭建一个bot帮我们的工作或学习提效。比如应用AI养成自驱自律的习惯,拥抱变化,持续学习,自我进化与迭代。比如培养下一代的可以用AI来辅助教育,毕竟孩子的未来是无限的。如郝景芳老师所说:

2024钉钉AI助理白皮书-人人都是创造者-钉钉&财商学院-38页.pdf

随着全球AI市场快速升温,新的AI应用不断涌现,2023年上半年,AI应用下载量突破3亿次,同比增长114%,超过2022年全年水平(数据来源:Sensor Tower)。AI Agent是当下大模型最激动人心的发展主线,被称为“大模型下一场战事”“最后的杀手产品”“开启新工业革命时代的Agent-centric”。在满足企业智能化需求的过程中,AI Agent作为一种理想的产品化落地形态,正在承接日益复杂的提质增效需求;通过强化内外部协同效能,它可以释放组织核心生产力,对抗组织熵增带来的挑战。AI Agent让“人机协同”成为新常态,越来越多的业务活动都将被委托给AI,而人类则只需要聚焦于企业愿景、战略和关键路径的决策上——B端企业和C端个人都将步入AI助理时代,在以AI Agent为代表的AI应用加持下,越来越多的创新将会源自于超级个体和小型组织。在一些领域里,一个人加上足够的AI工具,就可以成为一家专业化公司。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
从数据产品经理转行ai产品经理,需要补充哪些知识
从数据产品经理转行 AI 产品经理,您需要补充以下知识: 1. 思维链:谷歌在 2022 年的一篇论文提到,思维链能显著提升大语言模型在复杂推理方面的能力(即有推理步骤),即使不用小样本提示,也可在问题后面加一句“请你分步骤思考”。 2. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 3. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助如 Python 解释器等工具作为计算工具。 4. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助 LangChain 等框架简化构建流程。 个人总结:很多大佬表示要关注或直接阅读技术论文,像产品经理转型 AI 产品经理,需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍要完成一定知识储备。林粒粒呀的这期视频是很好的科普入门,值得一看。 此外,视频二提到了技术框架与关于未来的想象,比如 Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。
2025-04-08
我是一名 C 端用户产品经理,想转行做 AI 产品经理,应该从哪里入手
如果您作为一名 C 端用户产品经理想转行做 AI 产品经理,可以从以下几个方面入手: 1. 学习 Prompt 提示词:了解 Prompt 提示词的概念和应用,参考相关文档如 https://www.promptingguide.ai/zh ,掌握通过 Prompt 提示词解决产品经理日常工作场景的方法,例如行业洞察分析、方法论专家、头脑风暴、需求文档设计、功能价值分析、竞品分析报告、流程图/图表设计、思维导图设计、解决方案专家、周报生成器等场景。 2. 了解行业动态:关注 AI 行业的最新发展和趋势,通过混入各种相关群,与不同的人交流业务和技术,获取最新信息。 3. 弥补知识差距:由于 AI 技术发展迅速,可能存在技术与业务之间的知识断档。需要努力弥补自己在技术和业务方面的不足,熟悉相关技术知识,同时深入理解业务需求。 4. 积累项目经验:可以尝试参与一些 AI 相关的项目,哪怕是免费为相关人员提供服务,以积累实际经验。 5. 分析成功案例:研究已有的 AI 产品,了解其成功的因素和实现方式。
2025-03-22
如何转行ai产品经理
以下是关于转行 AI 产品经理的一些建议: 1. 积累相关经验:像案例中的贤峰,有医学、计算机、医生、码农、产品经理等多领域经验,Sundy 有 5 年产品运营经验。您可以通过在不同行业和岗位工作,积累丰富的经验,为转行打下基础。 2. 学习 AI 知识:了解生文生图的原理和应用等 AI 相关技术,熟悉 AI 领域的发展动态。 3. 明确自身定位:不同公司对 AI 产品经理的定位不同,要了解市场需求,找准自己的方向。 4. 提升业务能力:具备咨询和商业化的思维,能帮公司厘清业务增长机会。 5. 行业沉淀与创新:有行业沉淀和认知的产品经理转型更有机会,要找到细分的场景痛点并完成 PMF 验证,关注海外优秀案例,进行业务创新。 6. 拓展人脉资源:混入各种群结交朋友,跟他们聊业务、技术,获取更多信息和机会。 7. 做好信息甄别:在求职时,对公司做好充分的了解和评估。
2025-03-21
转行做AI产品经理的自学指南,并帮我找到学习资源途径
以下是一份转行做 AI 产品经理的自学指南及学习资源途径: 自学指南: 1. 了解 AI 基础知识,包括常见的概念、技术和应用。 2. 学习产品管理的核心知识,如需求分析、用户体验设计等。 3. 关注技术原理,例如思维链、RAG、PAL、ReAct 等,可通过相关论文和科普视频进行学习。 4. 积累实践经验,尝试参与实际项目或模拟项目。 学习资源途径: 1. WaytoAGI(通往 AGI 之路):这是一个致力于人工智能学习的中文知识库和社区平台,提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面。 汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。 提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 相关技术论文:虽然对于小白有难度,但可以借助 AI 辅助阅读,完成一定知识储备。 3. 科普视频:如林粒粒呀的相关科普视频。 4. 行业访谈:例如安克创新 CEO 阳萌的访谈,获取前沿观点和启发。 此外,您还可以参考北京分队中相关人员的经验,如 Sundy 从产品运营转行当 AIGC 产品经理的经历。
2025-02-21
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
转行无经验可以找哪些AI行业的岗位
以下是一些转行无经验可能适合的 AI 行业岗位: AIGC 产品经理:如 Sundy 从教育方向和 web3 行业转行,学习了生文生图的原理和应用后目标成为 AIGC 产品经理。 数据开发咨询、AI 视频制作与编辑:例如识影拥有 8 年数据开发经验,目前专注于探索这方面工作。 AI 创业者:像也毛从艺术专业毕业做职业导演,现布局竖屏短剧及 ai 短剧赛道;黄燕燕从 17 年地产人转行创业人工智能领域赛道,主做人工智能领域的服务与培训。 需要注意的是,虽然这些岗位可能对无经验者开放一定机会,但仍需要通过学习和实践不断提升自己在 AI 领域的知识和技能。
2024-12-24
普通人想学习AI自动化,make和coze哪个更推荐一点
对于普通人学习 AI 自动化,Make 和 Coze 哪个更适合的问题,以下是一些相关信息供您参考: Make 对于编程小白比较友好,其思考过程较长,有助于学习,但不太适合专业选手,因为思考过程较慢,可能会让人有点不耐烦。Make 具有国内版优势,包括深度理解中国开发场景和技术生态、完全免费、无需翻墙、流畅稳定,还具备完整的 IDE 功能(代码编写、项目管理、插件管理、源代码管理等)。您可以通过进行尝试。 Coze 是一款 AI Agent 的衍生产品,其价值在于可以跟进当前 AI Agent 工具的发展情况,发现商业化机会,还能用于做产品 Demo。在学习新知识如 RAG 时,可以先通过 Claude 了解细节概念,再通过 Coze 搭建 Demo 进行实践。在学习 RAG 过程中,还可以利用 Coze 的知识库能力创建如产品资料问答机器人等 Bot。 总的来说,如果您是编程小白,Make 可能更适合;如果您希望跟进 AI 工具发展并进行实践操作,Coze 可能更符合您的需求。但最终的选择还需根据您的具体学习目标和个人偏好来决定。
2025-04-08
ai如何让普通人个人实现经济独立
在 AI 时代,普通人实现经济独立可以通过以下方式: 1. 达到人机协作的高级形态与独立创新:努力达到与 AI 高度协同又不失主导的状态,利用 AI 组成自己的“AI 团队”,实现原来需要很多人才能完成的目标。例如在产品开发中,一个人借助 AI 可以同时扮演多个角色,高效完成各项工作,实现一人公司或个人创造者经济。但要达到此阶段,需要对 AI 工具掌控纯熟,保持自主性和判断力,将 AI 看作“增强器”而非替代者。 2. 充分运用 AI 进行渐进式培养:从心态、知识、技能、思维、创造力到协作能力,层层推进,不断强化自身的主动性和思考力,成长为适应 AI 时代的超级个体,在知识广度、思考深度、创造力和效率上实现飞跃。 此外,还可以关注以下方面: 1. 了解 AI 多模态大爆发的趋势,认识到“互动”与“内容”可能变得廉价,而“真实”会成为稀缺资源。 2. 关注“AI 原生”的商业模式,基于 AI 的能力再造商业模式,而非套用现有流程。 3. 思考 AGI 可能带来的极端垄断和中心化操控能力,为自己准备 PlanB。 4. 认识到“人的模型”是 AI Agent 的前提,是 AI 与人合作的关键一环。 5. 关注 AGI 会主动投资的技术,如可控核聚变、量子计算、超导、广义机器人等。
2025-03-24
普通人通过ai赚钱
以下是一些普通人通过 AI 赚钱的方式: 1. 电商:婴儿的四维彩超 AI 预测 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出现实模样进行变现。孕妇妈妈在孕期 22 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝的模样,从而衍生出市场需求。在小红书、抖音等公域平台发布相关笔记吸引咨询,将客户引流到私域接单变现。 操作流程:客户提供四维彩超图原图,在 Midjourney 里进行垫图和特定描述词,整个流程不超过 10 分钟就能出图。 变现方式:受众群体多为宝妈,变现方式多样,单价不低。但在平台引流要注意隐蔽,避免被平台检测限流或封号。 2. AI 产业中的机会 基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,普通人若无强资源应谨慎入局,可考虑“合作生态”的切入机会。 技术层:技术迭代速度快,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑。 应用层:是广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,“杀手级”应用更是稀少,普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 3. 内容创作 像作者本人是 AI 的受益者,AI 是生产力工具,能降本增效,但仍需投入大量时间和精力,起到辅助作用。 同时存在 AI 的受害者,他们的技能失效,AI 未创造足够新的生存空间。 作者作为坚定的 AGI believer,期望 AI 能做出重大科学发现、治愈疾病、消除饥饿和肥胖、给每人发钱,让人类自由从事想做的事。
2025-03-23
请问普通人怎么从事ai产品经理
普通人要从事 AI 产品经理,可以从以下几个方面入手: 1. 技术背景:具备扎实的编程、算法工程、AI 应用开发、后端开发等技术知识,这对于理解和推动 AI 产品的开发至关重要。 2. 产品开发与管理经验:积累互联网和 AI 产品开发方面的经验,提升项目管理与执行能力,以推动产品的落地与优化。 3. 多元化应用场景:了解 AI 在 AIGC 内容创作、自动驾驶、金融数据分析、教育、医疗健康、影视创作、营销等各行业的应用。 4. 学习与技能提升:处于 AI 技术初学阶段的人,要通过学习提升技能,并将其应用到实际工作和生活中。 5. 工具使用:广泛使用生成式 AI 工具,如 Midjourney、Stable Diffusion(SD)、Coze、GPT 等,培养对工具的熟悉度和运用能力。 6. 协作与共学:积极参与各种 AI 学习社群和线上线下活动,与他人共学交流,提升技能与认知。 7. 内容创作:具备自媒体运营、视频制作、文案策划等内容创作能力。 8. 营销与品牌运营:掌握商业化路径,将 AI 技术与商业化需求结合,提供完整解决方案。 9. 活动策划与执行:积累活动策划和运营经验,具备资源整合和组织协调能力。
2025-03-21
一个高中毕业普通人学习AI如何从小白到精通
对于一个高中毕业的普通人,若想从 AI 小白成长为精通者,可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于纯小白开发 AI 应用,还可以参考以下经验: 1. 从小白学代码,看人类导师和硅基助教的协作之道: 像案例中,女儿在 Claude 和父亲的帮助下,用 Unity 开发了一个 RPG 小游戏。起初父亲不相信纯小白能通过 AI 搞定 Unity 程序,但女儿通过让 Claude 教她做一个简单任务,半小时内完成并明白了 Unity 里的基本概念。 开发过程有顺利也有挫折,挫折原因包括问题描述不清、AI 给的方案复杂、配置错误等。这让我们意识到小白需要通过 AI 能直接搞定的小项目,先学明白背后的原理,在此基础上才能开发复杂项目。最好有人类导师,一开始把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。 2. 基础小任务: 推荐从一个最最基础的小任务开始,让 AI 先帮你按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 如果用的是 o1mini,可以在 prompt 最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果 windows 机器则是 create.cmd),足够勤勉的 o1mini 会为你生成一段超级长的代码,并给出提示,复制粘贴并执行,一次性生成十多个目录和文件,超方便。 3. 明确项目需求: 通过和 AI 的对话,来逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,这样的文档会包含影响技术方案选择的细节,比直接给 AI 一段口头的需求描述要准确得多。在后续开发时每次新起一个聊天就把文档发给 AI 并告知在做第几点功能,会非常方便。
2025-03-21
普通人如何学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下补充内容: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 优质信息源:像没有技术背景的普通人,想要学习或了解 AI,最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 另外,对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习内容可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。学习资源都是免费开源的。
2025-03-21
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
AI行业目前的产业链是怎么样的
AI 行业的产业链大致可分为上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发)。 上游基础设施层:布局投入确定性强,但涉及海量资金投入,入行资源门槛高,未来国内可能更多由“国家队”承担重任。普通人若无强资源,可考虑“合作生态”的切入机会。 中游技术层:处于技术爆炸阶段,迭代速度极快。规模不大的团队或个人需慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 下游应用层:是广阔蓝海,尽管从业者增加并涌现出一些产品,但针对行业/细分领域的成熟应用产品不多,“杀手级”应用稀少。普通个体和小团队强烈推荐重点布局,拥有超级机会和巨大发展空间。 此外,据 SensorTower 统计,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,图像和视频类 AI 应用占据主导地位,对话机器人类别排名第二。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 美国红杉资本指出,AI 供应链从下到上分为六层,各层盈利能力存在显著差异。第一层的芯片代工厂和第二层的芯片设计商保持高利润水平;第三层的工业能源供应商受益良多;第四层云厂商处于重金投入阶段;第五层的 AI 模型开发商面临亏损;第六层的应用服务商充满潜力,但市场规模有限。大型云厂商是整个供应链的“链主”。行业格局方面,头部阵营基本稳定。
2025-04-13
零基础如何学习AI从而进入AI行业
对于零基础想要学习 AI 从而进入 AI 行业的人,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI 可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-04-12
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10