Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何快速上手AI人工智能,并在工作和生活中熟练应用

Answer

以下是快速上手 AI 人工智能并在工作和生活中熟练应用的方法:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块进行深入学习。
  4. 学习核心产品链路相关概念:
    • 了解 AI 应用,它是以自然语言为主要交互形式,通常包含一个或多个技能。
    • 熟悉技能(Skills),即 AI 应用所具备的各种能力,如应用问答、数据查询、数据更新等。
    • 掌握数据和知识,这是支撑 AI 技能的数据资产,聚合各类数据,包括数据表、分析表、知识库和数据流。
    • 理解记忆,它是存储和检索信息的能力,用于学习和记忆与用户和环境交互中的经验,为用户提供更定制化更精准的服务。
    • 明确权限,即定义数据可被哪些用户访问和操作。
    • 了解模型配置,包括配置 AI 应用使用的模型及相关参数。
    • 掌握应用发布,将开发好的应用发布到不同渠道,如 Lark Bot 和 My AI 等。
    • 学会应用管理,在应用发布上线后,管理应用的数据、进行角色授权、监控应用使用状态等。
  5. 对于 Python + AI 的学习:
    • 继承和多态:了解类之间的继承关系以及如何实现多态。
    • 异常处理:理解异常,学习如何使用 try 和 except 语句来处理程序中可能发生的错误。
    • 文件操作:学习文件读写,理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。
    • AI 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。
    • 数学基础:熟悉统计学基础(如均值、中位数、方差等统计概念)、线性代数(如向量、矩阵等基本概念)、概率论(如条件概率、贝叶斯定理)。
    • 算法和模型:了解监督学习(如线性回归、决策树、支持向量机(SVM))、无监督学习(如聚类、降维等算法)、强化学习的基本概念。
    • 评估和调优:了解如何评估模型性能(包括交叉验证、精确度、召回率等),学习如何使用网格搜索等技术优化模型参数。
    • 神经网络基础。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

【简单6步,快速上手】体验核心产品链路

|概念/名词|解释|<br>|-|-|<br>|AI应用|围绕大模型能力的AI应用,以自然语言为主要交互形式,通常包含一个或多个技能|<br>|技能(Skills)|AI应用所具备的各种能力,如应用问答、数据查询、数据更新等|<br>|数据和知识|支撑AI技能的数据资产,聚合各类数据,包括数据表、分析表、知识库和数据流|<br>|记忆|存储和检索信息的能力,用于学习和记忆与用户和环境交互中的经验,为用户提供更定制化更精准的服务|<br>|权限|定义数据可被哪些用户访问和操作|<br>|模型配置|配置AI应用使用的模型及相关参数|<br>|应用发布|将开发好的应用发布到不同渠道,如Lark Bot和My AI等|<br>|应用管理|应用发布上线后,管理应用的数据、进行角色授权、监控应用使用状态等|

写给不会代码的你:20分钟上手 Python + AI

继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
现在学AI视频怎么学上手快些
以下是一些能帮助您快速上手学习 AI 视频的途径和方法: 1. 您可以先查看 AI 视频学社的相关内容,包括入门教程: 2. 加入 AI 视频学社的交流群,需要学习 AI 视频的,参与 AI 视频挑战赛,参与 AI 视频提示词共创的小伙伴,可以扫二维码或联系:三思或小歪【备注:AI 视频学社】,但必须有 AI 视频账号才能进群。 3. 参加每周都举办的 Video Battle 以及不定期举办的各种视频比赛。 4. 您还可以学习我 AI 北京系列共学课,例如: 12 月 13 日 20:00(,讲师:@啊朔 12 月 14 日 20:00(,讲师:@二金 5. 对于小白来说,做 AI 视频思路清晰很重要,提示词方面要注意主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),您可以参考相关案例,如: 生成视频: 第一次生成 抽卡结果不理想 ,符合要求的修改提示词:母亲很疲惫看着孩子
2025-04-11
如何快速上手Cursor、Windsurf、V0.dev、bolt.new、Devin等AI编程产品的经验,能快速转型为AI产品经理?
以下是关于快速上手 Cursor、Windsurf、V0.dev、bolt.new、Devin 等 AI 编程产品并转型为 AI 产品经理的一些经验: 1. 深入理解用户场景和 AI 能力边界:要构建差异化的 AI Native 体验,需要同时对 AI 能力边界和用户场景有深入洞察。 2. 持续迭代产品:在快速变化的模型能力下,避免在每次的基座模型迭代中掉队或被淘汰。 3. 构建良好的模型产品化能力和基础设施:使得应用可以持续收集用户数据以迭代模型。 对于具体的产品: Cursor: 允许用自然语言描述需求,对上下文有深度理解能力,能理解整个项目的结构和依赖关系,进行跨文件的语义分析。 提供智能的代码重构建议,自动诊断和修复常见错误,基于代码自动生成文档。 但要注意,即使有 AI 辅助,当好产品经理也不容易,需要反复沟通和调整。 Devin:作为 2024 年横空出世的产品,预示着软件开发范式的根本转变。 Windsurf、V0.dev、bolt.new 等: 可以使用如 Cursor Composer 构建产品、使用 Bolt.new 构建产品、使用 V0.dev 生成组件等。 此外,国内知名的 AI 全栈开发者 @idoubi 分享了相关使用经验,包括自动补全代码、Debug&&Fix Error、实时对话&&联网搜索、写提示词、写前端页面、截图生成组件、写常用的代码逻辑/函数、代码重构、多语言翻译等方面。同时,对于零代码基础的人员,也有使用相关工具实现想法的方法,如使用 Cursor Composer、Bolt.new、Claude 等构建不同类型的应用。还可以盘点常用的 AI 辅助编程工具和使用场景,如 AI 编辑器(Cursor、Windsurf、Pear Al 等)、编辑器 AI 扩展(Github Copilot、Continue、Cline 等)、UI 组件生成工具(Cursor、V0.dev、Claude、screenshottocode 等)、完整项目构建工具(Cursor、Bolt.new、Replit Agent、Wordware 等)。
2025-04-10
用文生图来画插画风格的系统流程图、概念图有哪些快速上手的prompt、平台和教程
以下是关于用文生图来画插画风格的系统流程图、概念图的快速上手的 prompt、平台和教程: 平台:Tusiart Prompt 提示词: 用英文写您想要 AI 生成的内容,不用管语法,仅使用单词和短语的组合去表达需求,单词、短语之间用英文半角逗号隔开。 描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 教程: 1. 定主题:确定您需要生成的图的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:按照主题找内容贴近的 checkpoint,如麦橘、墨幽的系列模型。 3. 选择 lora:在生成内容基础上,寻找内容重叠的 lora 以控制图片效果及质量。 4. ControlNet:可控制图片中特定图像,如人物姿态、特定文字等,高阶技能可后续学习。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 这个即可。 7. 负向提示词 Negative Prompt:用英文写您想要 AI 避免产生的内容,单词和短语组合,中间用英文半角逗号隔开。 8. 采样算法:一般选 DPM++2M Karras,也可留意 checkpoint 详情页上模型作者推荐的采样器。 9. 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 10. 尺寸:根据喜好和需求选择。 辅助网站: 1. http://www.atoolbox.net/ :通过选项卡方式快速填写关键词信息。 2. https://ai.dawnmark.cn/ :每种参数有缩略图参考,更直观选择提示词。 3. https://civitai.com/ :可抄作业,复制图片的详细参数用于生成。 下次作图时,可先选择模板,点击倒数第二个按钮快速输入标准提示词。
2025-03-28
上手coze的路径,整理一个教程的列表
以下是上手 Coze 的路径及相关教程列表: 1. 历史活动教程: 5 月 7 号():大聪明分享|主题:Agent 的前世今生,每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么。流程安排:20:00@?AJ 主持开场,20:00 21:00 大聪明分享,21:00 21:30 关于 Coze 随便聊聊。 5 月 8 号():大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze。流程安排:20:00 21:20 大圣分享。 5 月 9 号():艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例,线上答疑。流程安排:20:00 21:00 艾木分享,21:00 21:30 线上答疑。 5 月 10 号():罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书。流程安排:20:00 21:00 罗文分享。 5 月 11 号():Itao 分享|主题:和 AI 成为搭子,线上答疑。流程安排:20:00 21:00:itao 分享,21:00 21:30 线上答疑。 2. 基础教程: 3. 大圣的胎教级教程中的 Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可以在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。 字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可以正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具,参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程:Bot 的开发和调试页面布局主要分为提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。
2025-03-16
从零开始的话,从哪开始学习和上手
如果您想从零开始学习 AI 并上手,以下是一些建议: 1. 阅读相关论文和博客:可以从“GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List”开始,其中涵盖了人工智能工程的多个领域,如 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调等。 2. 学习 Prompt(提示词)技巧:掌握“分配角色”“给出示例(fewshots)”“思维链(ChainofThought)”这三板斧,深入研究这三个核心方面。 3. 了解 Stable Diffusion:通过知乎上的“教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识”,学习其资源、核心基础原理、网络结构、搭建使用和训练等方面的知识,包括模型工作流程、核心网络结构、推理流程、训练环境配置等。
2025-03-13
初学者可以从哪些方面上手
对于初学者上手 AI,以下是一些建议: 1. 调度器和采样器方面:可以从 Euler 或 DDIM 开始,因为它们提供了良好的平衡点,便于快速了解生成过程。如果对生成过程中的稳定性和细节处理有严格要求,可以考虑 DPM++ SDE Karras、LCM 和 Dynamic Thresholding 这样的采样器。在需要快速生成图像的情况下,DPM fast、Euler 和 DDIM Fast 是不错的选择。如果希望生成更具创意或独特风格的图像,可以尝试 Heun、DPM++ 3M SDE Palefire 以及 Restart 采样器。对于高要求的图像生成任务,推荐使用 DPM++ 3M SDE Karras、DPM2 Exponential 和 LCM 这些经过优化的采样器。 2. 基本概念方面: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系,浏览入门文章。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 选择感兴趣的模块深入学习,掌握提示词的技巧。 3. 实践方面: 理论学习之后进行实践,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 4. 体验方面: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 5. Prompt 方面: 认真写出自己的第一个 prompt,理解 GPT 的工作原理,至少先真正理解以下几个问题:GPT 说人话的能力是怎么来的、“涌现”的产生、prompt 的概念和意义、为什么现阶段我们不得不用 prompt。推荐两个课外阅读,即 B 站 UP Yjango(于建国博士)很早前发布的相关视频。 您还可以关注获取更多内容。
2025-03-11
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
我是一名0基础的AI使用者,如果我需要熟练的搭建自己coze来完成一些业务工作,我的学习路径是什么样的?可以为我推荐一个学习计划,包括学习的资料获取途径和资料推荐吗?
以下是为您推荐的从 0 基础学习搭建自己的 Coze 来完成业务工作的学习路径和学习计划: 学习路径: 1. 了解 Coze AI 应用的背景和现状,包括其发展历程、适用场景和当前的局限性。 2. 熟悉创建 AI 应用的操作界面,包括学习业务逻辑和用户界面的搭建。 3. 掌握前端和后端的基础知识,了解其在 Coze 应用中的作用。 4. 学习容器的操作和页面布局技巧。 学习计划: 1. 资料获取途径:可以通过飞书知识库获取相关学习资料。 2. 资料推荐: “90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包含智能纪要和智能章节,详细介绍了 Coze 应用的创建过程、界面讲解、前端与后端基础及界面组件布局、容器操作与页面布局等内容。 (筹划中)「Agent 共学」之“两天学会用 AI 建站”,其中的共学日程表可能会提供相关的学习安排和指导。 在学习过程中,建议您重点熟悉桌面网页版的用户界面,按照资料中的步骤逐步实践,遇到问题及时查阅资料或寻求帮助。祝您学习顺利!
2025-03-31
我该如何从零基础,系统学习AI类工具?我的目标是熟练制作AI视频
以下是从零基础系统学习 AI 类工具并熟练制作 AI 视频的步骤: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,在使用 AI 工具时,以下是一些相关的资源和建议: 想出点子:最佳免费选项为4.0,但由于与互联网连接,必应可能更好。 制作视频:最佳动画工具为用于在视频中为人脸制作动画的。 同时,要注意深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。
2025-03-24
怎么熟练运用coze
以下是关于熟练运用 Coze 的详细指导: 一、创建 Coze 并添加音乐播放器 1. 创建一个 Coze。 2. 在“用户界面”拖入一个 Markdown 组件。 3. 在 Markdown 中写入 HTML 代码来创建音乐播放器。对于不熟悉前端代码的同学,可以使用智谱清言等 AI 工具生成代码。 4. 调整代码获取在线音乐: 将 Markdown 自带的内容全部删除,将生成的代码写入 Markdown 组件。 找一个在线音乐播放平台,获取歌曲的 URL。 打开浏览器的控制台(按 F12)找到 network(网络),选择播放的请求,将带有.mp3 格式的 URL 复制出来。 找到代码中的<source src=\"song.mp3\" type=\"audio/mpeg\">部分,将 song.mp3 换成复制的音乐地址,刷新开发页面,使播放器可以使用。 二、获取 Coze 的 accessToken 和 botid 1. 获取 accessToken: 在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats 。 添加令牌,设置令牌的名称和过期时间(为了安全起见,最多 1 个月)。 设置权限,如会话管理和对话,拿不准可全部选择,完成后点击“确定”按钮,记得复制下拉令牌,因为该令牌只会出现一次。 2. 获取 botid: 通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮,地址栏中的数字即为 botid。 注意:如果在前端使用 bot,必须将其发布成为 API,点击发布,选择 API,待审核通过后,按上述方法获取 botid。 三、保姆级教程:Coze 打工你躺平 1. 先跑起来,创建第一个 bot: 目标是创建一个 Coze Bot,帮您查阅 Hacker News 并中文返回。 打开 coze.cn/home,点创建 Bot,信息随便输。 尝试联网询问,若答不出,引入联网插件 WebPilot,重新尝试联网。 2. 用上「回复逻辑」,让它能将链接转换成回答。 3. 发布到飞书,基本成型。 4. 【进阶】使用工作流/workflow&代码/code,更灵活自定义。
2025-03-16
请罗列出你掌握的OCR技术 以【方式名称+曾使用过自认最熟练的操作】的格式填写
以下是我掌握的 OCR 技术: OCR 识别:对图片进行 OCR 识别,获取图片中的文本信息,并对识别结果进行调整和优化。
2025-03-10
学完以上课程 熟练上手实操,需要多长时间,请回答需要多长时间而不是回答课程数量
学习不同的 AI 课程并熟练上手实操所需时间因人而异,但大致估计如下: 《雪梅 May 的 AI 学习日记》中制作微信机器人的共学课程,包含 6 个分享,每个分享 2 3 小时,需要有大块完整时间,可能需要数天甚至更长时间才能学完。 入门强化学习,如果没有基础,学习概率论和线性代数相关课程大约需要周末一天时间;吴恩达和李宏毅的课程约 25 小时;《动手学深度学习》前五章约 10 小时;王树森课程的前几节约 5 小时;《动手学强化学习》看到 DQN 部分约十几小时。 微软 AI 初学者入门课程为期 12 周、共 24 课时。 需要注意的是,这只是一个大致的估计,实际所需时间会受到个人学习能力、投入程度等因素的影响。
2025-02-19
小白怎样学习ai工具 熟练运用于工作生活
以下是为小白提供的学习 AI 工具并运用于工作生活的建议: 一、从菜鸟到达人的进阶之路 可以参考元子的进化史: 1. Day 1:懵懵懂懂,只会说“你好,帮我写个报告”。 2. Day 7:学会表达,比如“帮我写一份周报,重点说明项目进度”。 3. Day 14:熟练掌握,例如“我需要一份项目总结,包含数据分析和改进建议”。 4. Day 30:把常规 AI 工具都试过一遍,并选定自己要持续玩的方向,比如 AI Agent。 5. Day 60:组队参加 AI Agent 比赛并有幸得奖。 这里推荐一个社区小伙伴的 100 天 AI 之路,每天都有记载,大家可以感受一下进境: 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 二、工作中的 AI 小帮手 1. 需要快速生成报告,AI 来帮忙。 2. 需要快速整理数据,AI 来处理。 3. 需要快速翻译文件,AI 来翻译。 4. 需要快速优化文案,AI 来优化。 三、参与制作 AI 动画短片的经验分享 在参与设计 AI 动画短片时,比如负责“刺猬菠萝”角色的图片和视频制作,即使没有相关经验,在他人指导下也能逐渐掌握基本技巧,并通过 MJ 和 RunWayAI 工具提高效率。 为了做好这件事,可以: 1. 利用 WaytoAGI 社群中的入门资料,快速了解动画制作的基本流程和技术。 2. 积极参与团队讨论,向有经验的大佬请教,多多参与「共创活动」,不仅能快速学习,还能收获伙伴。 四、AI 与生活 对于超出自己理解范围的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。在面向父母的“AI 布道”活动中会发现,AI 工具虽强大,但与普通人之间存在一定距离。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。 如果想要跟元子交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-02-18