以下是一些关于 Agent 的优秀案例和相关知识:
优秀的 Agent 构建平台:
智能体的类型:
关于 Agent 的定义: Agent 是执行特定任务的 AI 实体,是一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 中的使用方式不同,Agent 拥有复杂工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。
最有名的案例:斯坦福 25 人小镇。
相关参考文章:
以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别
智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。1.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。1.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。1.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。1.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。
Agent是执行特定任务的AI实体。Agent(智能体)=一个设置了一些目标或任务,可以迭代运行的大型语言模型。这与大型语言模型(LLM)在像ChatGPT这样的工具中“通常”的使用方式不同。在ChatGPT中,你提出一个问题并获得一个答案作为回应。而Agent拥有复杂的工作流程,模型本质上可以自我对话,而无需人类驱动每一部分的交互。参考文章:https://logankilpatrick.medium.com/what-are-gpt-agents-a-deep-dive-into-the-ai-interface-of-the-future-3c376dcb0824能干什么最有名的案例:斯坦福25人小镇https://waytoagi.feishu.cn/record/1sfvuej0sATQfbO6zbeEAWk02Lilian Weng(OpenAI应用人工智能研究负责人)的这篇Blog可以说是目前AI Agent领域优质论文的系统综述,她将Agents定义为LLM、记忆(Memory)、任务规划(Planning Skills)以及工具使用(Tool Use)的集合,其中LLM是核心大脑,Memory、Planning Skills以及Tool Use等则是Agents系统实现的三个关键组件,在文章中,她还对每个模块下实现路径进行了细致的梳理和说明。到今天,构建AI Agent的工具箱已经相对完善,但仍需要面对一些限制,例如上下文长度、长期规划和任务分解,以及LLM能力的稳定性等。https://lilianweng.github.io/posts/2023-06-23-agent/