Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI逻辑

Answer

以下是关于 AI 逻辑和如何判断一张图片是否由 AI 生成的相关内容:

AI 逻辑

在当下的 AI 产品中,大都支持自定义 AI 的回复方式。例如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”。设定“人设与回复逻辑”时,其写法就是 Prompt,您可以相信 AI 的智商,无论怎么写它都能理解,但仅供参考,您可以自由发挥。

目标是尝试输入某个 AI 产品的网址,如 https://www.anthropic.com/news/introducing-claude ,AI 会自动处理并返回这个产品的名称、简介等信息。但由于 AI 的特性,它并不总能返回合适的结果。处理方法有很多,比如重试、优化 Prompt 或者使用 Workflow(这个后面讲)。

如何判断一张图片是否 AI 生成的

从本质上分析,人类的绘画创作是一个线性发展的过程,通常先学习线稿表达、再理解色彩搭配、随后加入光影表现等高级技巧,一步一个脚印地创作。初级人类画手可能在形体把握上不准确,但会认真刻画每一笔,笔触生硬但完整。天才除外,普通人很少能在掌握线条之前就大胆使用光影和色彩。

而 AI 是以积累数据、扩散噪声、再降噪收束的路径来生图的,这个过程不是线性的创作过程,而是计算猜测并筛选的螺旋迸进过程。这导致 AI 作画经常在同一张图中呈现出不同绘画级别的细节,比如线条还没整好,色彩却很完美;前后景透视有问题,但光影却很好。这种情况不太符合人类的创作逻辑。

有意思的是,有人提问说人类初学阶段也有画得不对的情况,会不会被误鉴为 AI 画的。

Content generated by AI large model, please carefully verify (powered by aily)

References

大聪明:保姆级教程:Coze 打工你躺平

目标?尝试输入某个AI产品的网址,如:https://www.anthropic.com/news/introducing-claudeAI自动处理,并返回这个产品的名称、简介等信息??穿插知识??对于当下的AI产品中大都支持「自定义AI的回复方式」在ChatGPT/GPTs里是「Instructions」在Coze里是「人设与回复逻辑」设定「人设与回复逻辑」这里的写法就是Prompt你可以足够相信AI的智商:无论你怎么写,它都能理解以下仅供参考,你怎么写都行测试「人设与回复逻辑」尝试输入网址:https://www.anthropic.com/news/introducing-claude也就是Claude的介绍信息页AI就会按照预先设定的格式进行返回成功了!??穿插知识??由于AI的特性它并不总能返回合适的结果就比如这里它并没完全按我的需求返回处理的方法有很多比如:重试?优化Prompt或者使用Workflow(这个后面讲)

大聪明:保姆级教程:Coze 打工你躺平

目标?尝试输入某个AI产品的网址,如:https://www.anthropic.com/news/introducing-claudeAI自动处理,并返回这个产品的名称、简介等信息??穿插知识??对于当下的AI产品中大都支持「自定义AI的回复方式」在ChatGPT/GPTs里是「Instructions」在Coze里是「人设与回复逻辑」设定「人设与回复逻辑」这里的写法就是Prompt你可以足够相信AI的智商:无论你怎么写,它都能理解以下仅供参考,你怎么写都行测试「人设与回复逻辑」尝试输入网址:https://www.anthropic.com/news/introducing-claude也就是Claude的介绍信息页AI就会按照预先设定的格式进行返回成功了!??穿插知识??由于AI的特性它并不总能返回合适的结果就比如这里它并没完全按我的需求返回处理的方法有很多比如:重试?优化Prompt或者使用Workflow(这个后面讲)

如何判断一张图片是否 AI 生成的

从本质上分析,人类的绘画创作,是一个线性发展的过程。具体表现为,我们通常都是先学习线稿表达、再理解色彩搭配、随后加入光影表现等高级技巧,一步一个脚印地创作。较为初级的人类画手,可能在形体上把握不尽准确。但多半会认真地完成每一笔的刻画,笔触虽生硬但完整。天才在外,普通人很少能在掌握线条之前,就很大胆地使用光影和色彩。而AI,是以积累数据、扩散噪声、再降噪收束的路径来生图的。这个过程往往不是一个线性的有先有后的创作过程,而是一个计算猜测并筛选的螺旋迸进过程。这就导致AI作画经常会在同一张图中呈现出不同绘画级别的细节。比如线条还没整利索,色彩却能用得尽善尽美;比如前后景透视都够呛,但光影却能媲美哈苏hasselblad全彩相机。这显然是不太人类的。仿佛上面那个抄作业的不聪明学生,再次把作业抄串了行。有意思的是,有朋友在Talk中提问说,「人类也有画得不太对的,尤其在初学阶段,五官乱飞的奇行种尝试也不在少数。那这样的画作,会不会被误鉴为AI画的呢?”」

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
中国AI投资逻辑
中国 AI 投资存在以下逻辑: 1. 大规模算力投资:会使公司转变为重资产模式,在瞬息万变的科技市场中可能对公司估值产生不利影响,进而影响投资人收益。获取和使用高性能算力成本高昂,是重大决策。 2. 投资圈现象:许多投资人给大模型创业者看似矛盾的策略,如招募名校人才、组织产品发布会、推出产品、进行下一轮融资,但避免购买算力。多数创业公司选择规避算力风险抬高估值,这可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成关键。 3. 行业趋势:2024 年,AI 仍是最强吸金赛道。国内 AI 行业融资总金额增加但事件数下降,马太效应明显,资本更青睐热点和高成熟度赛道。智能驾驶在细分赛道中表现突出,AI+教育、游戏、医疗等赛道投资总额增长。政策方面,政府积极推进,国家队频繁出手投资。 4. 发展历程:OpenAI 坚持大模型方向成功,前瞻性投资算力为其奠定基础,其成功是战略眼光和长期投入的结果,背后是惊人的资源调动。中国企业工程优化能力强,人们对国内大模型快速应用充满期待。
2025-03-27
教我工作流的底层逻辑跟如何入门学习工作流
工作流的底层逻辑及入门学习方法如下: 工作流通常由多个节点构成,节点是其基本单元,本质上是包含输入和输出的函数。常见的节点类型包括: 1. LLM(大语言模型):使用输入参数和提示词生成处理结果。 2. Code(代码):通过 IDE 编写代码处理输入参数,并返回输出值。 3. Knowledage(知识库):根据输入参数从关联知识库中召回数据,并返回。 4. Condition(条件判断):ifelse 逻辑节点,用于设计工作流内的分支流程,根据设置条件运行相应的分支。 5. Variable(获取变量):从 Bot 中获取变量作为参数在工作流中使用。 6. Database(数据库):在工作流中使用提前配置在 Bot 数据库中的数据。 以下是一些入门学习工作流的示例和资源: 1. 对于生成绿幕素材和绿幕素材抠图的工作流,您可以下载工作流文件拖入 ComfyUI 中自动加载,然后对照相关说明进行学习。工作流链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 对于 Glif 图像流制作冰淇淋甜品地标,您可以按照以下步骤学习: 1 分钟交作业:点击网址 https://glif.app/@jianStuart/glifs/cly85fy2i000cqe87zcu72i5l ,选一张主体区分度高且主体为地标的图,上传图片并点击相应按钮,多点几次选一张满意的即可。 5 分钟学习制作:点击顶上的“build”按钮,点击“+”加号,选择“img input”,再点下面的“+”加号,选“image generator”,把提示词放进节点,打开“advanced controls”,修改参数,勾选“Enable input image”并改参数。 3. 对于 Coze 平台的工作流,官方有现成的教程参考: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本还提供了一些示例,建议跟着实操一遍,如: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent
2025-03-24
我想写一部都市玄幻小说,已经有了简单的大纲。请问使用哪款AI工具?又没有 AI味。快速的写出真人作者的小说意境。并且上下逻辑清晰30万的长篇小说。列出免费工具。
以下为您推荐两款可用于写都市玄幻小说的免费 AI 工具及相关方法: 1. Coze: 工作流核心节点: 用 Bing 搜索标题相关的内容。 用程序将搜索结果结构化(不熟悉程序的可忽略或直接复制文中的代码)。 用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要。 再用大模型来写文章。 输出文章内容。 2. 与 AI 交互写作(如南瓜博士的经验): 确定主题:不写科幻,用非常规视角,如以猫为第一人称写爱情小说。与 AI 讨论主题,挑选 AI 提供的调味料,明确主题。 构思情节:先刻画人物,如喜欢书店店员艾拉这个人物,使其更丰满,再设计故事线。 希望这些工具和方法能对您创作小说有所帮助。
2025-03-19
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
不能用APP思维、传统数字平台思维去做大模型创业和人工智能创业,二者在底层逻辑和商业模式等方面完全不同
大模型创业和人工智能创业与 APP 思维、传统数字平台思维在底层逻辑和商业模式等方面存在显著差异。大模型和人工智能创业更注重数据的深度处理、算法的优化创新以及对复杂问题的解决能力。相比之下,APP 思维通常侧重于用户界面和功能的设计,以满足特定的用户需求;传统数字平台思维则更多关注平台的搭建和用户流量的获取与运营。在大模型和人工智能领域,技术的突破和创新是关键,需要投入大量资源进行研发,并且要面对更高的技术门槛和不确定性。而 APP 和传统数字平台的创业相对更侧重于市场推广和用户体验的优化。总之,不能简单地用 APP 思维和传统数字平台思维来指导大模型和人工智能创业。
2025-03-07