直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

总结,提炼大纲的提示词

回答

以下是关于总结、提炼大纲的提示词的相关内容:

  1. 多步提示词可并行、串行或组合运行,如向不同年龄段用户解释概念时,先让 Claude 写大纲再扩展成完整解释,提示词包括概念、水平等,并要求用 XML 标签标记大纲。
  2. Midjourney 的 Prompt 关键词基本格式为“形容词+主语+环境+行为+构图+参考风格+渲染程度+后缀”,对人物、环境、摄影等描述越详细,效果越接近期望,通过多次尝试可获得满意的绘图。
  3. 胡凯翔提出构建提示词时要充分描述任务,以写标书任务为例,包括提取提纲、拆解指南、prompt 成稿,其中 prompt 成稿采取简提示详资料方式,遵循先提纲后文章、逐节逐章输出的方式。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

Claude官⽅⽂档提⽰词优化建议.pdf

[title]VIRTUALMulti-step prompts can be run in parallel,in series,or a combination.下⾯的案例:向不同年龄段的⽤⼾解释某个概念。分别是一年级、八年级、还有⼤学新⽣。并且希望Claude先写一个⼤纲,然后将⼤纲扩展成完整的解释。提⽰词1这⾥有一个概念:{{CONCEPT}}我想让你写一篇关于这个概念的三句话的⽂章⼤纲,适合这个⽔平的读者:{{LEVEL}}请只回复你的⼤纲。把⼤纲⽤XML标签<outline> </outline>标记好。提⽰词2下⾯是一个三句话的⼤纲:{{OUTLINE}}请把⼤纲中的每句话扩展成一段话。要求每个句⼦作为相应段落的第一句。请确保以适合这个年龄段的读者:{{TYPE}}

【Midjourney】Prompt关键词基本格式

出现这样的情况,主要是和我们的提示词有关,虽然怎么输入好像都可以生成图片,但是高质量的绘图还是要遵循一定的逻辑的。我们可以把提示词总结成这样一段公式“形容词+主语+环境+行为+构图+参考风格+渲染程度+后缀”。接下来,我重新编写一下提示词。首先是对人物的描述,情绪、发型、穿着,你写得越详细,最终的效果就会和你期望得越接近。然后是对环境的描写,天气、地理位置等。再然后是对摄影、灯光的描述,和成像质量的描述,最后的后缀词可以规定绘图的比例。接下来,Midjourney给我生成了四张图,这次的结果就像那么回事了。尤其是这一张,挺接近我心目中主角的样子了,无论是光影的层次,还是背景肃杀的大雪,都体现出了一个坚毅、冷峻的大侠风骨。接下来,我再尝试画一下女主的形象看看。就描述她第一次出现的场景,在一个水草丰美的地方,一身白色的长裙,一位来自部落的少女。刷了一些图之后,挑选了一张比较满意的形象。

胡凯翔:构建提示词的方法——基于阅读 Claude Cookbook 的思考和测试

很多情况下,我们不需要去考虑多么华丽的提示词,给GPT足够的信息,它就能回馈你更具针对性的内容。这部分对应的其实不完全是提示词的能力,而是表达能力和需求分析能力。以我亲身经历的用prompt写标书任务为例:今日成果,完成近50页word,共8章内容,基本全部由gpt3.5生成。概括过程,可分为提取提纲,拆解指南,prompt成稿三大类。1、提取提纲是根据招标文件评分标准列出初步提纲,以保证完全响应。目前是人工提取,有prompt化的可能。2、拆解指南指的是拆解项目背景,工作内容,方法步骤等内容,归纳到x—mind中,尽量拆细,为gpt提供足够上下文语境,确保prompt的稳定性。3、prompt成稿的过程中,基本上都采取简提示详资料的方式与gpt对话,尽可能在足够短的对话中提供给gpt足够的上下文语境,真正的提示词内容只采用赋予角色,限定格式两种,并遵循先提纲后文章,逐节逐章输出的方式增强稳定性。什么是先提纲后文章呢?简单讲分为三步:1、根据简化精简的项目信息让gpt生成提纲;2、为每份提纲写上摘要;3、根据1、2内容逐节输出文章。

其他人在问
有论文大纲怎么ai生成一篇完整的论文且文献要真实
利用 AI 生成一篇完整且文献真实的论文,您可以参考以下步骤和建议: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎(如 Semantic Scholar)和文献管理软件(如 Zotero)来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具(如 Quillbot)来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具(如 Google Colab、Knitro)来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具(如 Grammarly)来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具(如 Turnitin、Crossref Similarity Check)来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 在论文写作领域,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-04-13
如何要求AI写一个论文初稿大纲
以下是要求 AI 写一个论文初稿大纲的方法: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-12
我怎么让ai帮我写论文,在我有完整的数据内容和大纲的情况下
以下是在您有完整的数据内容和大纲的情况下,让 AI 帮您写论文的步骤和建议: 1. 确定论文主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成论文的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果论文涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写论文的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查论文的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保论文的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。 另外,还有一些相关的经验分享: 对于写作与内容创作,先确定一个明确的大主题,再细化出一系列小主题,形成文章大纲,在大纲要点下添加关键词提示。对着文章大纲,挨个语音输出。然后用 AI 组合成完整的文章,在 AI 合并出来的文章里插入一些配图,再稍微修改调整。 对于丰富细化,要让 AI 一段一段进行细节描写。为确保文章前后一致,可先让 AI 帮助写故事概要和角色背景介绍,并在其基础上按自己的审美略做修改。可以让 AI 以表格的形式输出细节描述,这样有打破 AI 叙事习惯、便于局部调整、确保内容具体等好处。 对于串联成文,把生成的表格依次复制粘贴,让 AI 照着写文章。 但也要注意,在修改过程中可能会遇到一些问题,比如某些 AI 模型可能会出现“失忆”等情况,导致修改不符合预期。
2025-04-09
我已经有了论文大纲,需要生成技术路线图,哪个AI可以实现
以下是一些可以帮助您生成技术路线图的 AI 工具和方法: 1. 利用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 2. 使用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 3. 对于生成“延伸思考”的问题,可以让 AI 根据特定的参照(比如之前的产出或是新增的参考文案)输出具备更高关联度的内容。 4. 可以用同一段提示词对比不同模型的输出,择优深挖。 5. 在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 6. 先确定整个调研报告的大纲目录,例如通过手机识别示例报告的目录截图。 7. 让 AI 总结语言风格,如将范文交给 Claude 2 总结语言风格。 8. 让 GPT4 按照目录逐步生成章节内容,设置循环结构,根据情况决定是否调用 webpolit 插件查询相关信息。 9. 在需要搜索网络信息的章节处打上标签,让 GPT4 自主搜索信息再来生成内容。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行相关工作时,应保持批判性思维,并确保成果的质量和学术诚信。
2025-04-08
我需要ai帮助我根据我的大纲生成一篇标准的论文
以下是为您根据大纲生成标准论文的一些建议和参考: 首先,确定论文大纲目录。您可以参考老师提供的示例报告,或者通过手机识别相关截图来获取。 其次,明确整体的语言风格和特色。调研报告通常要求“逻辑清晰、层层递进、条理分明”,您可以将范文提供给类似 Claude 2 的工具来总结语言风格,但注意不要过度限制 AI 的生成,以免影响效果。 然后,让 GPT4 按照目录逐步生成章节内容。可以在 workflow 中设置循环结构,在其生成一段章节内容后,您确认同意再进行下一章节,否则重新生成。在生成内容前,让 GPT4 判断某章节是否需要调用 webpolit 插件查询相关信息。对于需要搜索网络信息的章节,可以打上标签,让 GPT4 自主搜索信息后生成内容。 在写作过程中,您还可以利用以下常见的文章润色 AI 工具来提高论文质量: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,帮助优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可根据输入生成符合要求的学术论文。 总之,生成论文需要综合运用各种方法和工具,根据自身需求选择合适的方式,不断优化和完善,以达到标准论文的要求。
2025-03-29
用deep seek撰写出小说大纲之后,怎么给提示词让其一章一章生成
以下是关于用 DeepSeek 撰写小说大纲后,如何给提示词让其一章一章生成的相关建议: 1. 模仿小说家写作:在提示词中描述特定小说家的文风特征,如鲁迅的文风特点等。 2. 控制创作字数:使用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。 3. 考虑引起共鸣和关注人类共性:用 DeepSeek 写小说要注重这方面,让好文字能引起生理和情绪共鸣。 4. 优化提示词: 模糊指令优化:如将宽泛需求“写小说”修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;将主观表述“写得专业些”修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法:首轮生成获取基础内容,然后进行特征强化、风格调整和最终校验等步骤。 5. 结合其他模型:写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 需要注意的是,DeepSeek 在写文方面全面领先,但长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。
2025-03-25
文本提炼
以下是对您提供的文本的提炼: 文本补全: 学习如何生成或操作文本。 完成端点可用于多样任务,提供简单强大接口连接模型。输入提示,模型生成补全,受任务复杂性和提示质量影响。 可通过 Playground 探索,API 输出非确定性,设置温度可调整。 本指南涵盖提示设计最佳实践,了解代码工作可访问代码指南。 Claude2 中文精读: 可执行多种文本处理任务,如摘要、编辑重写、情感识别、信息提取和删除、翻译等。 示例包括提取电子邮件地址、删除个人身份信息等。 提示工程关键原则: 原则 1 是编写清晰具体的指令,包括使用分隔符清楚限定输入不同部分,分隔符可以是多种明显标点符号,能避免提示注入。 策略 2 是要求结构化输出,如 HTML 或 JSON 格式,便于解析模型输出。
2025-03-10
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
如果我想给一份数学题目,把里面的数学题目进行知识点提炼分类,怎么利用AI实现?
要利用 AI 对数学题目进行知识点提炼分类,可以参考以下方法: 1. 题目内容识别:通过适当的方式将数学题目输入给 AI,让其理解题目内容。 2. 利用经过训练的 AI 模型:这些模型可能能够对题目中的数学概念、公式、定理等进行初步的分析和提取。 3. 人工校对与验证:AI 给出的结果需要人工进行校对,确保知识点提炼分类的准确性。 4. 清晰完整的指令输入:向 AI 提供清晰、准确且完整的指令,以提高其处理效果。 需要注意的是,AI 目前仍存在一定的局限性,不能完全替代人的思考和判断,在使用其结果时要谨慎验证。
2025-02-21
从你的知识库中总结提炼一下,形成一个表格,告诉我目前已经有哪些面向个人和面向企业的AI应用\工具\智能体,以及具体的功能简介
|应用类型|应用名称|使用技术|功能简介|示例场景| |||||| |智能体应用(Assistant)|无|基于上下文对话,自主决策并调用工具|客户服务:了解客户诉求,解决客户问题。如查询订单状态、处理退款等。个人助理:管理日程安排、提醒事项、发送邮件等。技术支持:了解技术问题,提供解决方案,帮助用户排除故障。| |工作流应用(Workflow)|无|将复杂任务拆解为若干子任务|AI 翻译:实现初步翻译、内容审校、再次优化的翻译流程,提升翻译质量。| |智能体编排应用|无|支持多智能体协作|综合调研报告:组建一个报告撰写团队,包括负责写作意图识别、大纲书写、总结摘要、智能绘图、事件研判、段落撰写、文笔润色等任务的智能体。软件开发团队:组建一个智能体开发团队,包括负责需求分析、系统设计、编码实现、测试调试、文档编写等任务的智能体。| |AI 游戏道具推荐系统|游戏内商城推荐功能|数据分析、机器学习|根据玩家需求推荐游戏道具。|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等。| |AI 天气预报分时服务|彩云天气分时预报|数据分析、机器学习|提供精准的分时天气预报。|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动。| |AI 医疗病历分析平台|医渡云病历分析系统|数据分析、自然语言处理|分析医疗病历,辅助诊断。|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。| |AI 会议发言总结工具|讯飞听见会议总结功能|自然语言处理、机器学习|自动总结会议发言内容。|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。| |AI 书法作品临摹辅助工具|书法临摹软件|图像识别、数据分析|帮助书法爱好者进行临摹。|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。| |超级简历优化助手|无|自然语言处理|帮助用户优化简历提高求职成功率。|超级简历优化助手分析简历内容并提供优化建议。| |AI 室内设计方案生成|酷家乐|图像生成、机器学习|快速生成个性化室内设计方案。|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案。| |AI 音乐创作辅助工具|Amper Music|机器学习、音频处理|协助音乐创作者进行创作。|Amper Music 根据用户需求生成旋律和编曲。| |AI 情感咨询助手|松果倾诉智能助手|自然语言处理、情感分析|提供情感支持和建议。|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询。| |AI 宠物健康监测设备|小佩宠物智能设备|传感器数据处理、机器学习|实时监测宠物健康状况。|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警。| |AI 旅游行程规划器|马蜂窝智能行程规划|数据分析、自然语言处理|根据用户需求生成个性化旅游行程。|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线。|
2025-02-06
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
哪个AI对PDF文件的提炼总结能力最强
目前在对 PDF 文件的提炼总结能力方面,Claude 2 表现出色。将整本书粘贴到 Claude 的前一版本中能取得令人印象深刻的结果,新模型更强大。可以通过查看相关经验和提示。此外,myaidrive.com 网站上的 AI PDF 也能处理较大的 PDF 文件,并为冗长的文档提供上级摘要。同时,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,其智能摘要功能能够辅助快速筛选信息。但需要注意的是,这些系统仍可能产生幻觉,若要确保准确性,需检查其结果。
2025-01-23
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
调教ai的利器,提示词工程
提示词工程是调教 AI 的重要手段,以下是关于提示词工程的相关知识: 作用:避免 AI 掉入“幻觉”陷阱,引导 AI 生成更可靠的内容。 原理:AI 对提示词的理解能力与幻觉的产生密切相关,清晰、具体的提示词能帮助其更好地理解意图,减少错误。 技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时要求引用权威文献,询问科学事实时要求引用科研论文,询问法律条款时要求引用官方文件。 要求 AI 提供详细的推理过程,如询问数学公式时展示推导过程,询问代码功能时逐行解释含义。 明确限制 AI 的生成范围,如询问名人名言时指定名人姓名和相关主题,询问新闻事件时指定时间范围和关键词。 通过这些清晰、具体、有针对性的提示词技巧,可以引导 AI 生成更准确和可靠的内容。但提示词工程只是辅助手段,从根本上解决 AI 幻觉问题还需从数据、模型、训练方法等多方面努力。 提示词工程就像与博学但有点固执的老教授交流,精心设计输入文本能引导 AI 更好地理解需求并给出更准确有用的回答。比如,问“请用简单的语言,为一个 10 岁的小朋友解释什么是人工智能,并举一个生活中的例子”,AI 更可能给出通俗易懂的解释。 在使用 AI 工具的过程中,可能会出现答非所问、回答格式不标准等问题,为让 AI 更好地服务,需要学习提示词工程。当用户的需求接近 AI 真实范围时,可通过写提示词甚至创建 BOT 来优化使用效果。
2025-04-15
提示词
提示词是让 AI 听懂您的需求并生成想要画面的关键。 基础公式(新手必学):景别+运镜+主体+动作+风格。示例:特写镜头|镜头旋转|发光水晶球悬浮|星尘特效|赛博朋克风格。 进阶公式(提升质感):景别+运镜+主体(细节)+动作(速率)+场景(层次)+氛围+光影。示例:全景俯拍|无人机跟拍|雪山湖泊(镜面倒影)|慢动作|冷色调光线|自然纪录片风格。 在星流一站式 AI 设计工具中,prompt 输入框可输入提示词,使用图生图功能辅助创作。 提示词用于描绘您想生成的画面,支持中英文输入。不同模型对输入语言有不同要求,如通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组。 写好提示词要做到: 1. 内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 2. 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 3. 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 4. 借助辅助功能,如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 如果您接触过大量提示工程相关的示例和应用,会注意到提示词由一些要素组成,包括指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。但提示词所需的格式取决于想要语言模型完成的任务类型,并非所有要素都是必须的。
2025-04-15
如何成为提示词工程师
提示词工程师是在与人工智能模型交互时,负责设计和优化提示的专业人员,旨在通过精心构造的提示引导模型产生准确、有用和相关的回答。 其主要职责包括: 1. 设计提示:根据用户需求和模型能力设计有效的提示,考虑提示的长度、结构、措辞和信息量等因素,以清晰传达用户意图并引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同的提示策略等方式不断优化提示,提高模型性能。 3. 评估提示:使用各种指标如模型的准确率、流畅度和相关性等来评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对所工作的领域有深入了解,以便设计出有效的提示。 2. 自然语言处理(NLP):了解 NLP 的基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 的基本原理和技术,以便理解和使用 AI 模型。 4. 沟通能力:具备良好的沟通能力,与用户、团队成员和其他利益相关者有效沟通。 以下是一些提示词工程师工作的实际案例,比如在市场营销类和商业类中,有自动优化 Prompt 的案例,如 JackeyLiu 熟悉的转化步骤包括: 1. 角色和能力:基于问题思考 chatGPT 最适合扮演的角色,应是该领域最资深的专家,适合解决问题。 2. 上下文说明:思考提出问题的原因、背景和上下文。 3. 任务陈述:基于问题进行陈述。 提示词工程师是一个新兴职业,随着人工智能技术的不断发展,对其需求将会越来越大。
2025-04-15
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
音频总结的AI有哪些
以下是一些关于音频总结的 AI 相关内容: 在智能纪要方面,AI 音乐创作通过输入更高级词汇与 AI 音乐对话能产生更好效果,有相关版块、挑战、分享会和教程,可加入 AI 音乐社区。数字人语音合成介绍了声音克隆技术,常用的是 JPT service。 总结类 AI 工具方面,如 BibiGPT·AI 音视频内容一键总结(https://b.jimmylv.cn/)、15 个值得一试的 YouTube 视频摘要 AI 工具(https://nealschaffer.com/youtubevideosummarizerai/)、summarize.tech:AIpowered video summaries(https://www.summarize.tech/)。 在生成式 AI 季度数据报告中,会议总结赛道可能因远程工作和在线会议普及而需求增加,Otter AI 作为领先产品保持稳定增长。其中 2023 年 4 月到 2024 年 3 月,赛道月访问总量有变化,如 2023 年 4 月约 1314.6 万,2024 年 3 月增至 2146.3 万。同时还有相关的榜单数据,如 23 年 4 月访问量 Top10 等。
2025-04-11
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
我现在想做一个总结我每日复盘的智能体
以下是关于创建总结每日复盘智能体的相关信息: 智普工作流功能及创建流程: 新用户资源包:新用户有 1 元及 5 元的资源包可供购买,能满足使用需求。 工作流功能:具备文章、文件、网页总结,生成图片、视频和文字版日报等功能,通过意图识别跳转节点,使用多个 agent。 工作流创建:在控制台的自动体中心,右键创建智能体,可选择对话型或文本型,对话型多用于多 agent 协作等场景,创建后在空旷画布的左下角添加节点,节点包括 agent、LM、工具、代码、数据提取、分支判断和问答等,agent 通过跳入跳出条件与其他节点交互,LM 通过工作流连线执行功能。 文档获取:文档可在 vtoagi.com 首页的 banner 获取,飞书群也可获取。 版本选择:接入微信时,有云服务器和本地电脑两种版本,可按需选择。 关于姿谱清流工作流及模型配置的讨论: 工作流节点与 agent:工作流中节点和 agent 的连接方式,agent 具有意图识别和跳出条件,可实现任务跳转,所有 agent 平级可互相跳转。 文本存储问题:姿谱清流本身无存储功能,需依靠其他笔记工具存储执行完的文本。 模型配置与调试:介绍了姿谱清流中角色扮演模型的配置方法,包括角色名称、背景、人格等设置,以及单节点调试功能和用户配置。 意图识别与冲突:意图配置冲突可能导致识别错误和乱跳,识别准确率相对较准。 多智能体的记忆:多智能体之间存在记忆,后续会讲到相关参数的使用。 在 cos 主页有新手教程文档,可据此构建智能体。工作流偏向节点调用,可通过 prompt 构建提示词并优化。还能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。
2025-04-10
我想寻找一个AI模型,能快速读懂视频,并总结成为知识架构的应用或网站
以下为您推荐能快速读懂视频并总结成为知识架构的应用或网站: 百炼大模型平台:其影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,可生成爆款文案,还能根据偏好调试提示词。2025 年 1 月 9 号更新的模型可通过 API 调用纹身 AI 等,Windows 用户可在左下角开始运行输入命令提示符进行本地调用,但生成过程较缓慢。 应用场景:包括商品信息图片生成淘宝上架规格参数、智能手表文案生成、社交媒体内容生成、合同提取、拍照搜题、图片转换、模特换装等。 提供 AI 硬件底层能力,AI 拍立得相机拍照可快速成诗并打印,其对接多模态能力可通过智能体应用或工作流形式的 API 调用。 开源使用:有开源地址,可下载到本地,配置阿里云百炼平台的 API key 及 appid 实现场景,运行项目需特定 Python 包和依赖,可新建应用获取 appid,拍照时需设置 API key。 此外,关于 AI 技术原理与框架的相关知识: 生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,电脑通过找规律进行学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,生成图像的扩散模型不属于大语言模型,对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-04-09
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31