以下是关于 RAG 的相关资料:
RAG 的定义及工作流: RAG(Retrieval-Augmented Generation)是一个自然语言处理(NLP)技术,结合了检索和生成两种主要的 NLP 方法。工作流程如下:用户向 ChatGPT 查询最新事件,如 OpenAI 首席执行官的相关情况,ChatGPT 因预训练数据限制缺乏最新信息,RAG 从外部知识库检索最新文档摘录,如相关新闻文章,将其与初始问题合并成丰富提示,使 ChatGPT 能合成知情回答。从技术上讲,RAG 通过各种创新方法得到丰富,解决了“要检索什么”“何时检索”“如何使用检索到的信息”等关键问题,关于“要检索什么”的研究已从简单标记检索和实体检索发展到更复杂结构。
RAG 的优势: RAG 是解决某些问题的有效方案,能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好控制生成的文本输出,用户可深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。
参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
下图中展示了一个典型的RAG应用工作流程:用户向ChatGPT查询最近引起广泛关注的事件(例如,OpenAI首席执行官的突然解雇和复职),这些事件引发了大量的公众讨论。作为最著名和广泛使用的LLMs,受限于其预训练数据,ChatGPT缺乏对最新事件的了解。RAG通过从外部知识库中检索最新的文档摘录来解决这一问题。在这种情况下,它获取了与查询相关的一些新闻文章。这些文章连同最初的问题被合并成一个丰富的提示,使ChatGPT能够合成一个知情的回答。这个示例说明了RAG的过程,展示了它通过实时信息检索来增强模型的响应能力。从技术上讲,RAG已经通过各种创新方法得到丰富,这些方法解决了关键问题,例如“要检索什么”、“何时检索”和“如何使用检索到的信息”。关于“要检索什么”的研究已经从简单的标记检索和实体检索发展到更复杂的结构,如块和知识图研究重点放在检索的粒度和数据结构的级别上。粗粒度带来更多的信息,但精度较低。检索结构化文本提供了更多信息,但效率较低。
RAG是什么?为什么要关注RAG?RAG技术为何如此重要?在看本文之前相信大家都会有这样的疑问,不言而喻对于一个不懂技术或者刚接触大语言模型的肯定都会有点懵的。下面这篇文本就是对RAG的技术原理、历史发展、应用方法、应用场景和未来的发展方向的完整解读。文本内容源自论文:《Retrieval-Augmented Generation for Large Language Models:A Survey》首先让GPT回答下上面的问题:什么是RAG?"RAG"(Retrieval-Augmented Generation)是一个自然语言处理(NLP)技术,主要用于提高语言模型的效果和准确性。它结合了两种主要的NLP方法:检索(Retrieval)和生成(Generation)。检索(Retrieval):这一部分的工作是从大量的文本数据中检索出与输入问题最相关的信息。它通常使用一个检索系统,比如基于BERT的模型,来在大规模的文档集合(例如维基百科)中寻找与输入相关的文段。生成(Generation):生成部分则使用类似GPT的语言模型,它会根据检索到的信息来生成响应或回答。这个过程涉及理解检索到的内容,并在此基础上生成连贯、相关且信息丰富的文本。
而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。微调可以提高非微调模型的性能,并使交互更加频繁有效率的它特别适合强调基础模型中的现有知识,修改或自定义模型的输出,并向提供复杂的指令模型然而,微调不适合合并模型中的新知识或需要的情况新用例的快速迭代。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)