Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

这些是通用大模型,我要的是金融股票领域的大模型

Answer

目前在金融股票领域的大模型有彭博发布的 BloombergGPT 以及蚂蚁金融大模型。

通用大模型能够有问必答,适用不同产业,但在特定领域表现可能不理想。而垂直大模型类似于单领域专家,虽受众有限但在特定领域更专业,比如金融领域。微调是对大模型针对特定领域的训练过程,能优化参数提高在该领域的专业性,且相比从头训练新模型更经济高效。

Content generated by AI large model, please carefully verify (powered by aily)

References

2023年度中文大模型基准测评报告.pdf

•百川智能发布Baichuan2—Turbo字节云雀大模型闭源通用大模型百川BaichuanYi-34B开源医疗汽车教育行业大模型MindGPT部分领域岐黄问道银河大模型..................序列猴子BlueLM AndesGPT孟子云天书玉言金融工业文化/零售/交通AInno-15B妙笔大模型[heading4]蚂蚁金融大模型[content]轩辕大模型COSMO-GPTSMore LrMo..................

七大行业的商业化应用

戴文渊向钛媒体App表示,不是所有的场景、客户都能接受千亿参数的成本,这个需要客户选择,即便是千亿、万亿的参数只是代表你的最高能力,但最后给到客户的时候,就不一定所有的场景都能技术释放。而垂直大模型的数据生成规模会小一些,场景更易用,Chat的思维能力更高。比如,彭博此前发布了金融领域的大模型BloombergGPT,应用于其所在的垂直领域;医联则发布发布内首款医疗大语言模型MedGPT,可在真实医疗场景中发挥实际诊疗价值。无论是医疗、金融、电商等领域,都需要垂直性大模型产品。多位AI行业人士向钛媒体App指出,从产业角度来看,通用模型就是“百科全书”,能够有问必答,能够适用不同的产业土壤,而垂直模型类似于单领域的专家,虽然专业,但受众注定是少数人。但垂直大模型的发展对各个领域的模型性能持续提升。今年6月16日,OpenAI进行了更新,GPT模型的价格降低了75%,GPT-3.5-turbo的输入token价格降低了25%最新价格,每1k token,0.0001美金。奥特曼还曾提到,OpenAI正在开发新的技术,将可以使用更少的数据、更低廉的价格来训练模型。

大圣:全网最适合小白的 Llama3 部署和微调教程

在人工智能领域,我们通常会根据应用领域将大模型分为两类通用大模型领域特定模型。通用大模型如GPT-4.0、GPT-3.5、文新一言以及开源的通义千问、Llama2和Llama3它们通过训练获得了广泛的自然语言理解能力。这些模型类似于多面手,能够处理多种类型的语言任务。然而,尽管这些通用模型拥有强大的基础语言能力,它们在特定领域如法律或医学中的表现可能并不理想。这就像是一个语言能力已完全发展的10岁孩子,虽然可以流利交流,但要成为某一专业领域的专家,还需要学习更多相关知识。这种对大模型针对特定领域进行的训练过程称为大模型的微调。微调是一个调整过程,通过在特定领域的数据上训练模型,优化所有层的参数,以使模型在该领域表现更佳。提高其在该领域的专业性你可能会问,为什么不直接构建一个专用于法律的模型?关键在于,从头开始训练一个具备自然语言处理能力的大模型需要大量的时间和资源。小公司负担不起但是通过微调,我们可以在现有模型的基础上,更经济、更高效地适应新的应用领域。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
我要写论文,需要用什么ai工具‘
在论文写作中,以下是一些常用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用抄袭检测工具确保原创性,做最后的格式调整。 AI 文章排版工具方面: 1. Grammarly:不仅检查语法和拼写,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化过程。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化生成文档,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择合适的 AI 文章排版工具需考虑文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。
2025-04-14
我要根据PPT开发一个网页,请详细提供操作步骤和选择哪一个AI工具更合适。
以下是根据 PPT 开发网页的详细操作步骤以及适用的 AI 工具: 一、生成 PDF 1. 将您的文件转换为 PDF 格式,其他文件格式也可行,但 PDF 效果更佳。 2. 若希望在文章中加入图片,需将图片转换为 Markdown 格式。 网络图片:直接复制图片的 URL,右键图片选择复制 URL,然后用 Markdown 格式写入文档。 自己的图片:使用图床服务(如 https://sm.ms/)托管图片,生成公链。 3. 插入视频:先将本地视频上传到公网(如 B 站),在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项获取 URL,用 Markdown 格式写入。 二、适用的 AI 工具 1. 爱设计 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 2. MindShow 网址:https://www.mindshow.fun//home 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 3. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制(相对耗时) 导入方式:复制最终大纲内容到本地 txt 文件,将后缀改为.md(若看不见后缀可自行搜索开启),打开 Xmind 软件导入 md 文件,在 Process ON 导入 Xmind 文件。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版再点击下载。若喜欢使用且无会员,可在某宝买一天会员。
2025-04-13
推荐几个AI工具及其使用方法,我要用于病案质控
以下为您推荐几个可用于病案质控的 AI 工具及其使用方法: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。您可以通过访问使用。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。您可以通过使用。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关病案质控的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。您可以通过使用。 这些工具可以帮助您从不同的角度审视和改进您的病案质控工作,您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-13
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09
我是一名日语大四学生,我要利用我的开题报告结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
要向 DeepSeek 提问以结合您的开题报告完成论文初稿,您可以遵循以下正确的提问模板: 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,例如您的开题报告的主题、研究目的、已有的研究进展等,以使 DeepSeek 更好地理解您的问题。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如您希望它根据开题报告提供论文大纲、分析相关数据、提供文献综述等,提出的需求越明确获得的答案越有价值。 4. 补充要求:您还可以提出关于回答的格式、风格、字数等方面的要求。 例如:您可以这样提问“我赋予您论文撰写助手的角色,我的开题报告主题是关于日本文化在现代社会中的变迁,目前我已经完成了初步的文献收集和分析,我的目标是请您根据这份开题报告为我生成一个详细的论文大纲,要求大纲结构清晰,逻辑连贯,具有一定的创新性”。
2025-03-31
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
外网好用的通用AI
以下是一些外网好用的通用 AI: 1. ChatGPT Plus:用户现在可以开启 web browsing 功能,实现联网功能。 2. Perplexity:结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 3. Bing Copilot:作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 4. You.com 和 Neeva AI 等搜索引擎:提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 此外,在通用写作方面,以下是一些相关产品: 1. HyperWrite AI 2. 秘塔写作猫 3. Neuroflash 4. Intelligent paraphraser 5. 5118.com SEO 优化精灵 6. Craft 7. Benchmarkemail 8. 深言达意 9. Magical AI 10. 易撰 11. 搜韵网 12. Araby AI 13. Samwell AI 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-10
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
现在deepseek从普通用户的层面,相比于其他模型,优势有哪些
DeepSeek 对于普通用户的优势包括: 1. 国产之光,在国内被广泛接入和使用。 2. 生成代码的质量可与国外顶尖大模型媲美。 3. 深度思考版本 DeepSeek R1 基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量。其“聪明”源于独特的“教育方式”,率先进入“自学成才”新阶段。 4. 思考与表达能力出色,在思考过程和输出结果的语气、结构、逻辑上表现优秀,碾压其他模型。 然而,DeepSeek 也存在一些不足,例如对于协助编程,其最大的上下文长度只有 64k,较短,导致无法处理更长的上下文和更复杂的代码项目。
2025-03-27
更通用一点,更落地一点,主题换成学习AI&LLM吧
以下是关于学习 AI&LLM 的相关知识: 一、AI 相关概念与技术 1. 概念 生成式 AI 生成的内容称为 AIGC。 AI 即人工智能。 2. 机器学习 电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 3. 深度学习 一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度)。 神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型) 对于生成式 AI,生成图像的扩散模型不是大语言模型。 对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 三、RL 与 LLM 融合的本质与阐释 AI 本质是一堆 scaling law。今天能看到最好的模型规模在 10 的 25 到 26 次方 FLOPs 这种规模,且数量级还会持续增长,算力是必要条件。一个值得被 scale up 的架构是基础,要支持不断加入更多数据。现在“吃”的是 base model 的 scaling law,未来可能会“吃”用户数据源的 scaling law。alignment 也有 scaling law,只要能找到对的数据就能解决。当 next token prediction 足够好时,能够平衡创造性和事实性。多模态数据的引入可推迟数据瓶颈问题,如视频和多模态的卡点解决不了,文本的数据瓶颈就会很关键。在限定问题(如数学或写代码)上,数据相对好生成,通用问题还没有完全的解法,但有探索方向。统计模型没有问题。
2025-03-17
能帮我做一个介绍生成式AI的ppt吗?5页左右即可,介绍一些通用的,用户规模较大的即可,不超过5种。
以下是为您生成的关于生成式 AI 的 5 页 PPT 内容: 幻灯片 1:封面 标题:生成式 AI 简介 幻灯片 2:生成式 AI 的基础模型 大型预训练模型可适应或微调用于多种下游任务,如情感分析、图像字幕和对象识别。 有可能革新医疗、金融和客户服务等行业,检测欺诈并提供个性化支持。 幻灯片 3:在软件开发中的应用 提及 Bard 和生成式人工智能工作室等工具,可用于调试、代码转换和应用构建。 幻灯片 4:PALM API 的会话式人工智能引擎 用户可用自然语言交互。 可创建数字助手、自定义搜索引擎、知识库和培训应用。 能与 Maker Suite 集成,通过图形用户界面访问 API,套件包含模型训练、部署和监控工具。 幻灯片 5:参考资料 All Readings:Introduction to Generative AI Here are the assembled readings on generative AI: 此外,以下是一些常用的 PPT 生成工具(网站): https://zhiwen.xfyun.cn/ 讯飞智文 http://Mindshow.fun Markdown 导入 http://kimi.ai 选 PPT 助手暂时免费效果好 http://Tome.app AI 配图效果好 http://Chatppt.com 自动化程度高 https://wenku.baidu.com 付费效果好 希望以上内容对您有所帮助!
2025-03-11
ai可以和哪些领域结合,让普通的人的生活得到帮助
AI 可以与以下领域结合,为普通人的生活提供帮助: 1. 教育培训: 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,缓解教育资源不平等的问题。 人工智能生成的虚拟角色也可以是数字陪伴,促进儿童成长。 2. 娱乐和休闲: 在影视行业,AGI 时代每个人都可以让 AI 根据自己喜好“量身定制”电影或剧集,甚至互动式地发展剧情。 在游戏领域,AGI 可以创造出高度逼真的虚拟角色,与玩家互动,使游戏世界更加生动。 在音乐、美术创作方面,AGI 能与人类艺术家协作或作为创作者助理,普通人也可以通过简短描述让 AGI 生成作品。 3. 日常生活: AGI 可以读取用户日程和邮件,自动为用户安排最优路线、预订餐厅、购买日用品等。 在购物时,AI 可以根据用户的尺寸和喜好筛选商品清单,甚至替用户做决定。 但在享受这些便利的同时,也需要警惕过度依赖带来的问题,如人类判断力和独立思考能力的退化。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
如果你是一个AI领域的专家,我有个问题关于应用AI来学习的:假设我有一个网上的课程,然后我把这个网上的课程全部视频都下载下来,然后输入给AI,让AI来学习,如果以后我问AI关于这方面的问题的话,AI能像课程老师一样思考,来回答我的问题吗
以下是关于您提问的相关内容: AI 的学习方式与人类有相似之处,也有不同之处。在医疗保健领域,为产生真正的改变,AI 应像人类一样学习。成为某个领域顶尖人才通常从多年密集信息输入开始,如正规学校教育和学徒实践,通过面对面学习获取书本外的信息。对于 AI 来说,当前学习方式及技术人员对待方式存在问题,应通过堆叠模型训练,而非仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定数据点。开发具有潜在空间层次结构的堆叠 AI 模型,能反映对基本元素的理解和预测能力,可能会平行于人类教育范例发展,也可能专门发展出新型专业知识。创建特定领域的专家 AI 可能比全能 AI 更容易,且需要多个专家 AI 提供多样意见。同时,应让 AI 接触现实世界互动,避免复制危险偏见。但不能因恐惧传播人类偏见而限制探索 AI 帮助民主化人类专家知识的意愿。 然而,您所提到的将网上课程视频全部下载输入给 AI 让其学习,然后期望它像课程老师一样回答问题,目前的技术和情况还不能完全保证实现。AI 的学习和回答能力取决于其训练数据、模型结构和算法等多种因素。
2025-04-13
有哪些完整综观地阐述了2022年到2025年AIGC相关技术和在设计领域的应用发展的研究报告
以下是为您找到的一些可能符合您需求的研究报告: 1. 月狐数据联合发布的《AI 产业全景洞察报告 2025》,深入分析了全球及中国人工智能产业的发展现状、全景图谱及企业出海情况。指出全球 AI 产业保持 19.1%的年均增长率,2024 年第三季度交易数量达 1245 笔,融资规模显著提升。美国在 AI 领域融资和应用市场中占据主导地位,中国紧随其后,2024 年一季度大模型规模占全球的 36%。国内 AI 企业出海呈现增长趋势,工具类和图像处理类应用在海外市场受欢迎,但东南亚和东亚地区付费习惯尚未形成。还展示了 AI 在各行业的应用现状,包括智慧医疗、智慧教育、企业服务等,强调了 AIGC 技术在提升用户体验和推动产业发展中的关键作用。链接:https://waytoagi.feishu.cn/record/DFqRrh4kqeqaIFchKtocVwVkn2d 2. 甲子光年的《2025 具身智能行业发展研究报告:具身智能技术发展与行业应用简析》,指出具身智能作为具备物理载体的智能体,强调通过与环境的交互实现智能行为,是人工智能与机器人技术的深度融合。当前,具身智能正处于技术萌芽期,受大模型技术推动成为热点,但在数据采集、模型泛化、技术路线等方面仍面临挑战。报告分析了具身智能的发展背景、现状及应用场景,认为中国在具身智能领域已走在国际前列,具备庞大的市场需求、完善的产业集群和良好的政策支持。链接:https://waytoagi.feishu.cn/record/TERPru4Jee7Gzbcu54WcUjsXnJh 3. 智能纪要:【跨界·未来】AIGC×视觉交互工作坊 Part1:AI 应用前瞻 2025 年 3 月 11 日。涵盖了 AI 在艺术创作中的应用与探索,包括 Lora 模型训练素材、模型训练比赛、Checkpoint 模型、线上与本地工作流、学习资源推荐、AI 创作挑战、装置艺术脉络、机械装置艺术理论、国内外装置艺术区别、AIGC 艺术尝试、机械进化与装置创作等方面。
2025-03-31
问题定义: 1. 核心问题陈述:创作一份个人参赛的、以光伏业务中财务工作与AI结合进行业务赋能为主题的展示类参赛方案框架。 2. 关键上下文信息:公司举办AI创新大赛,个人参赛,主题方向为工作和AI结合限定在业务赋能,公司业务是光伏领域。 3. 问题的具体范围界定:聚焦光伏业务中财务工作与AI结合进行业务赋能的展示方案框架创作。 答案要求: 1. 内容范围: - 必须包含:整体参赛方案思路、光伏财务业务与AI结合的具体方向、展示方案大致框架。
很抱歉,您提供的知识库内容中没有与光伏业务中财务工作与 AI 结合进行业务赋能的参赛方案框架相关的信息。但以下是为您生成的一个可能的参赛方案框架示例: 一、整体参赛方案思路 本次参赛方案旨在探索如何将 AI 技术应用于光伏业务中的财务工作,以实现更高效、精准和智能化的业务赋能。通过深入分析光伏行业的特点和财务工作的需求,结合先进的 AI 技术,提出创新的解决方案,提升财务工作的效率和质量,为公司的光伏业务发展提供有力支持。 二、光伏财务业务与 AI 结合的具体方向 1. 财务预测与分析 利用机器学习算法对光伏项目的成本、收益进行预测,为投资决策提供数据支持。 分析市场趋势和政策变化对财务状况的影响,提前制定应对策略。 2. 风险评估与管理 运用大数据和人工智能技术,对光伏项目的风险进行实时监测和评估。 建立风险预警模型,及时发现潜在的财务风险。 3. 成本优化与控制 通过智能算法优化供应链管理,降低采购成本。 分析生产过程中的能耗数据,实现成本的精细化控制。 4. 财务报表自动化生成与审计 利用自然语言处理技术自动生成财务报表,提高工作效率。 运用 AI 辅助审计,提高审计的准确性和效率。 三、展示方案大致框架 1. 项目背景与目标 介绍光伏行业的发展现状和公司的业务情况。 阐述将财务工作与 AI 结合的目标和意义。 2. 技术方案与实现 详细介绍所采用的 AI 技术和算法。 展示技术方案的实现过程和关键步骤。 3. 应用案例与效果 分享实际应用案例,展示 AI 在财务工作中的具体应用场景。 分析应用效果,如成本降低、效率提升、风险控制等方面的成果。 4. 未来展望与挑战 展望 AI 在光伏财务领域的未来发展趋势。 探讨可能面临的挑战及应对策略。 5. 总结与结论 总结方案的核心内容和创新点。 强调对公司光伏业务的价值和贡献。 以上框架仅供参考,您可以根据实际情况进行进一步的细化和完善。
2025-03-28