Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

RAG库排名

Answer

以下是关于 RAG 库排名的相关信息:

  • 在检索阶段获取匹配的文档片后,会有一个排序环节,通常基于文档片与输入问题之间的相似度分数来进行,确保最相关的片段排在前面。
  • RAG 是检索增强生成(Retrieval Augmented Generation)的简称,是当前最火热的企业级 LLM 应用方案,概括起来就是知识检索+内容生成。其主要组成包括数据提取、embedding(向量化)、创建索引、检索、自动排序(Rerank)、LLM 归纳生成。
  • 在重排 rerank 方面,搜到相似信息后存在选择策略,如默认取 TOP 10、TOP 25 等。大部分场景下选择最相似的通常没问题,但由于向量化基本是平权的,存在优化空间,特别是对于私有化数据,可引入来源机制进行调整,对向量化的数据进行综合评分,如相似度*置信度等,然后再进行 rebank。
Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

检索阶段会将匹配到的文档片全部获取,紧接着是一个排序的环节。对于检索的文档片进行排序,确保最相关的片段排在前面。这一步通常基于文档片与输入问题之间的相似度分数来进行排序

RAG提示工程(一):基础概念

RAG是检索增强生成(Retrieval Augmented Generation)的简称,是当前最火热的企业级LLM应用方案。RAG概括起来就是知识检索+内容生成。这么说太抽象,可以理解为大模型的开卷考试,既然是开卷考试,那么谁带的书和资料内容更全,谁翻书翻的更快更准,谁开卷考试的结果就往往更好。下面来看RAG的主要组成,依次是数据提取——embedding(向量化)——创建索引——检索——自动排序(Rerank)——LLM归纳生成。当然这里少了使用环节,我们暂时先忽略。大家知道,开卷考试时,往往大家的参考资料都差不多,在有限的考试时间内如何又快又准的锁定问题在书上的相关内容更为重要。RAG做的好不好也是如此,核心就看能不能将内容检索的又快又准。如果抄错了书上(知识库)内容,往往大模型给出的答案也南辕北辙。

RAG性能提升策略和评估方法(产品视角)

3.2重排rerank搜到了最相似的信息,那我选哪个呢?这个都是策略。有的默认的取TOP 10,TOP 25,等。大部分场景下选择最相似的就没有问题。但是,您在想一想,现在的向量化基本都是平权的,也就是每个向量的置信度是一致,我举个例子,官媒报道的消息的权重应该大于小道消息。但是现在的权限是相等的,不真实的信息也可以污染这个RAG的搜索结果,而这个位置就可以有优化空间,特别是对于私有化的数据来说,你的数据的置信度业务方是非常清楚的。所以在这方面可以进行改进,引入来源机制进行调整。对向量化的数据进行综合评分,例如相似度*置信度等,然后再进行rebank。以上就是笔者在做这个RAG知识问答上的一些思考,也感谢前辈们的智慧结晶,给与相关的思路和建议。共勉

Others are asking
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景如知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-03
AI视频模型排名
以下是一些关于 AI 视频模型的排名信息: 腾讯混元视频生成模型:在开源 AI 视频中无可争议地处于 T0 级别,闭源模型中排在 T1 附近。其特点包括超强的真实质感、很强的语义理解和可以切换镜头。开源地址为:https://github.com/Tencent/HunyuanVideo 。普通用户可在腾讯元宝 APP 的 AI 应用中查看,可能需要申请资格,腾讯处理速度较快。 在 2025 年 2 月 24 日的 AI 视觉模型测评排行榜中: Pixverse 在文生视频方面获胜率达 70%,表现出色。 豆包在图生图方面效果良好,美感度较高,在中文模型中领先。 Request 模型在国外模型中表现出色,甚至超过 Midjourney。 Luma 模型是一匹黑马,在图生图方面表现不错。 Midjourney 常用,但在本次图生图的排行中未居前列。 此外,国内如混元、阶跃等模型开源,通义万象即将开源,开源有利于形成更好更强的生态。测评活动会联合多位小伙伴对 AI 模型进行测评,并根据结果了解模型的偏好和能力,榜单会在微信公众号发布且定期更新。
2025-04-14
AI生图模型排名
以下是一些常见的 AI 生图模型排名(从高到低): 1. Imagen 3:真实感满分,指令遵从强。 2. Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 3. Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 4. 快手可图:影视场景能用,风格化较差。 5. Flux.1.1:真实感强,需要搭配 Lora 使用。 6. 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 7. Luma:影视感强,但风格单一,糊。 8. 美图奇想 5.0:AI 油腻感重。 9. 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 10. SD 3.5 Large:崩。 此外,在相关的测评中: 豆包模型在图生图方面效果良好,美感度较高,在中文模型中遥遥领先。 Request 模型自某种风格出圈后很火,在国外模型中表现出色,甚至超过了 Midjourney。 Luma 在图生图方面表现不错,曾是第一个有出色转场效果的模型,在本次评测中是一匹黑马。 Pixverse 在文生视频的评测中获胜率达 70%,表现出乎意料。 Midjourney 常用,但在本次评测中图生图的排行未居前列。
2025-04-14
ai音频排名
以下是关于 AI 音频排名的相关信息: 生成式 AI 季度数据报告 2024 年 1 3 月: 音频大类: 2023 年 4 月: 月访问量为 3838.1 万,Eleven Labs 以 814 万的访问量位居第一,占赛道月总访问量的 21.2%。Speechify 和 Murf AI 分别以 681 万和 431 万的访问量位列二、三,分别占赛道月总访问量的 17.7%和 11.2%。 2024 年 3 月: 月访问量增长至 5016.3 万,Eleven Labs 以 1962 万的访问量继续保持第一,占赛道月总访问量的 39.1%。TTSMaker 和 Speechify 分别以 418 万和 706 万的访问量位列二、三,分别占赛道月总访问量的 8.3%和 14.1%。 文字转音频辅助榜单: 2023 年 4 月访问量 Top10 可通过 aiwatch.ai 查看。 2023 年 4 月 2024 年 3 月月访问量增量 Top10 可通过 aiwatch.ai 查看。 音频编辑辅助榜单: 2023 年 4 月:月访问量为 1374 万,Adobe Podcast 以 595 万的访问量位居第一,占赛道月总访问量的 43.3%。Lalal.ai 和 The New Riverside 分别以 204 万和 198 万的访问量位列二、三,分别占赛道月总访问量的 14.8%和 14.4%。 2024 年 3 月:月访问量增长至 2136.8 万,Adobe Podcast 以 467 万的访问量继续保持第一,占赛道月总访问量的 21.9%。The New Riverside 和 Moises 分别以 357 万和 267 万的访问量位列二、三,分别占赛道月总访问量的 16.7%和 12.5%。近一年单月访问量增加了 762.8 万,年增长率为 55.5%。Adobe Podcast 的访问量减少了 128 万,而 The New Riverside 的访问量增长了 159 万。The New Riverside 的增长可能源于其提供的高质量音频编辑功能。 2023 年 4 月 2024 年 3 月月访问量减量 Top5 可通过 aiwatch.ai 查看。 赛道天花板潜力:77 亿$,对标公司:Notion、微软。总体趋势为快速增长,月平均增速 120 万,原生产品占比高。 赛博月刊@25 年 2 月:AI 行业大事记:AI 音频在去年跨越了真假难辨的临界点,成为继图像领域之后,第二条被资本看好的 AI 赛道。
2025-04-14
图生图网站排名推荐
以下是为您推荐的图生图网站排名: 1. 文生图: Imagen 3:真实感满分,指令遵从强。 Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 快手可图:影视场景能用,风格化较差。 Flux.1.1:真实感强,需要搭配 Lora 使用。 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 Luma:影视感强,但风格单一,糊。 美图奇想 5.0:AI 油腻感重。 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 SD 3.5 Large:崩。 2. 图生视频: pd 2.0 pro:即梦生成的画面有点颗粒感,p2.0 模型还是很能打的,很适合做一些二次元动漫特效,理解能力更强,更适合连续运镜。 luma 1.6:画面质量挺好,但是太贵了。 可灵 1.6 高品质:YYDS! 海螺01live:文生视频比图生视频更有创意,图生也还可以,但是有时候大幅度动作下手部会出现模糊的情况,整体素质不错,就是太贵了。 runway:我的快乐老家,画面质量不算差,适合做一些超现实主义的特效、经特殊就容镜头的。 智谱 2.0:做的一些画面特效挺出圈的,适合整过,但是整体镜头素质还差点,好处就是便宜,量大,管饱,还能给视频加音效。 vidu1.5:二维平面动画的快乐老家,适合做特效类镜头,单镜头也很惊艳,大范围运镜首尾帧 yyds!就是太贵了!!!!! seaweed 2.0 pro:s2.0 适合动态相对小的,更适合环绕旋转运镜动作小的。 pixverse v3 高品质:pincerse 的首尾帧还是非常能打的,就是画面美学风格还有待提升的空间。 sora:不好用,文生视频挺强的,但是最需要的图生视频抽象镜头太多,半成品都算不上,避雷避雷避雷,浪费时间。 3. 小白也能使用的国内外 AI 生图网站: 可灵可图 1.5:https://app.klingai.com/cn/texttoimage/new 通义万相(每日有免费额度):https://tongyi.aliyun.com/wanxiang/creation 文心一言:https://yiyan.baidu.com/ 星流(每日有免费额度):https://www.xingliu.art/ Libiblib(每日有免费额度但等待较久):https://www.liblib.art/
2025-04-13
目前国内各大ai有排名么
目前国内各大 AI 的排名情况如下: 从用户规模、新增速度、用户活跃和用户粘性等角度进行数据统计,在 APP 端,截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。夸克、豆包和 Kimi 智能助手月增长可达到千万级,DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道都基本处于停滞状态。用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 “量子位智库 AI 100”通过综合 100 和原生 100 两张榜单提名了国内优秀的 AI 产品。 需要注意的是,中国国内的大模型排名可能在短时间内会有变化。要获取最新的排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台。在通往 AGI 之路的知识库里,在会定期更新相关的排名报告,可以供您查阅。
2025-04-12
目前国内各大ai有排名么
目前国内各大 AI 的排名情况如下: 从用户规模、新增速度、用户活跃和用户粘性等角度进行数据统计,在 APP 端,截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。夸克、豆包和 Kimi 智能助手月增长可达到千万级,DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道都基本处于停滞状态。用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 “量子位智库 AI 100”通过综合 100 和原生 100 两张榜单提名了国内优秀的 AI 产品。 需要注意的是,中国国内的大模型排名可能在短时间内会有变化。要获取最新的排名,您可以查阅相关的科技新闻网站、学术论坛或关注人工智能领域的社交媒体平台。在通往 AGI 之路的知识库里,在会定期更新相关的排名报告,可以供您查阅。
2025-04-12