「AGIへの道」飛書ナレッジベースへ直行 →

AIGC图像应用有哪些

回答

AIGC 图像应用广泛,主要包括以下方面:

  • 数据增强:通过生成新的图像来提高机器学习模型的性能。
  • 艺术创作:用于生成艺术作品。
  • 产品图像生成:如生成虚拟现实场景或进行图像修复。

一些具有代表性的海外项目有:

  • Stable Diffusion(Stability AI):文本生成图像模型,由 VAE、U-Net 网络和 CLIP 文本编码器组成,通过特定流程实现图像生成。
  • DALL-E 3(Open AI):基于 ChatGPT 构建的新型神经网络,能从文字说明直接生成图像。
  • StyleGAN 2(NVIDIA):生成对抗网络,可生成逼真的人脸图像。
  • DCGAN(Deep Convolutional GAN):使用卷积神经网络的生成对抗网络,可生成各种类型的图像。

国内也有相关项目。

图像生成离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs)以及 Stable Diffusion 等,以创建与现实世界图像视觉相似的新图像。

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

2024AIGC法律风险研究报告(更新版).pdf

AIGC法律风险研究报告图像生成(image generation)也离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs),以及Stable Diffusion等,以创建与现实世界图像视觉相似的新图像。图像生成可用于数据增强以提高机器学习模型的性能,也可用于创造艺术,生成产品图像,如艺术作品、虚拟现实场景或图像修复,等等。一些具有代表性的海外项目:➢Stable Diffusion(Stability AI):文本生成图像模型,主要由三个部分组成,分别是VAE、U-Net网络和CLIP文本编码器。在具体的实现过程中,首先使用CLIP模型将文本转换为表征形式,然后引导扩散模型U-Net在低维表征上进行扩散,之后将扩散之后的低维表征送入VAE中的解码器,从而实现图像生成。➢DALL-E 3(Open AI):OpenAI基于ChatGPT构建的一种新型神经网络,可以从文字说明直接生成图像。➢StyleGAN 2(NVIDIA):一种生成对抗网络,可以生成非常逼真的人脸图像。➢DCGAN(Deep Convolutional GAN):一种使用卷积神经网络的生成对抗网络,可生成各种类型的图像。一些具有代表性的国内项目:➢

问:AIGC 在 CRM 中有什么应用?

AIGC(AI生成性内容)在CRM(客户关系管理)领域有着广阔的应用前景,主要包括以下几个方面:1.个性化营销内容创作AIGC可以根据客户的个人信息、购买历史、偏好等数据,生成高度个性化且富有创意的营销文案、视觉内容等,替代人工撰写,提高营销效率和转化率。1.客户服务对话系统基于AIGC的对话模型,可以开发智能客服系统,通过自然语言交互的方式解答客户的咨询、投诉等,缓解人工客服的压力。1.产品推荐引擎借助AIGC生成丰富的产品描述、视觉展示等内容,相结合推荐算法,为客户推荐更贴合需求的产品,提升销售业绩。1.CRM数据分析报告生成AIGC可以自动生成期望的数据分析报告内容,包括文字、图表、视频演示等形式,加快分析报告的生产流程。1.智能翻译和本地化AIGC技术能够提供高质量的多语种翻译及本地化服务,帮助企业打造精准的全球化营销内容。1.虚拟数字人和营销视频内容生成AIGC可以快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。1.客户反馈分析AIGC可以高效分析海量的客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。

2024AIGC法律风险研究报告(更新版).pdf

1.4本章小结GenAI(即生成式AI)是一种能够从已有数据中学习并生成新的数据或内容的AI应用,利用GenAI创建的内容即AIGC(全称AI-Generated Content)。作为一种强大的技术,生成式AI能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs和Transformer等模型生成文本,如GPT-4和GeminiUltra。图像生成依赖于GANs、VAEs和Stable Diffusion等技术,应用于数据增强和艺术创作,代表项目有Stable Diffusion和StyleGAN 2。音视频生成利用扩散模型、GANs和Video Diffusion等,广泛应用于娱乐和语音生成,代表项目有Sora和WaveNet。此外,AIGC还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。

他の質問
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
想要学习AIGC,推荐下相关的行业大V
以下是一些 AIGC 相关的行业大 V 推荐: :归臧整理的 AIGC 周刊,关注 AI 的朋友每周必读。 :连续创业者,Prompt 版块共建者。 。 :“互联网的那点事”,微博互联网观察家。 ZHO:建筑师|ComfyUI 设计师。 :AIGC 社区野神殿创始人。 。 赛博禅心:最新最快的 AI 资讯,作者大聪明。 张蔚:华兴资本经理,架构和投资版块共建者。 :热爱分享,永远好奇,AI 高质量社群组织者。 汗青:产品经理|AI 设计师。 此外,还有北京分队中的一些相关人士: Lucky:在信息技术领域公司任职 7 年+,目前担任江西 5 家公司企业级 information security 管理,3 个地区千万级企业级 confidentiality Project 管理,5 个地区上海、合肥、苏州、南京、深圳 information security 体系建设管理顾问,目前一只 20 人+AI 项目团队,终身学习践行者。能提供 AI 相关技术的所有项目,包括 AI 图片视频、2D 动画视频、AI prompt、AI 提示词企业培训、AI 大模型、AI agent、数字人等产品。坐标南昌。 粉仔:目前抖音上的 AIGC 相关博主,粉丝画像特别受到中老年妇女们的喜爱,俨然成了她们的偶像。熟悉目前主流的 AIGC 工具。坐标北京。 sam:做技术行业,热爱互联网和 AI 技术。 海地老师:AI 影视共创社北京分社的负责人。逍遥游的制片人和编剧。 Sunkim:自由体验设计师,前保利威设计负责人,先后在新浪、百度、脉脉做体验设计工作。对 AIGC 感兴趣,目前在做 AI 口语教育类产品(上线了),和 web3 相关设计,以及跟大伙学习 AI 视频制作。 胡凯翔:国企工作 10 余年,后沉迷 AI 提示词研究编写,小七姐第一期课程毕业生,微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册,使用 AI 辅助阅读和开智,标书、论文的写作,玄学取名和头像设计,目前沉迷个人知识体系的搭建和离谱村系列视频的共创。 陈皓/Robin:目前在家科技公司从事产品工作,主要和 Ai,3D 视觉内容+数字人相关;有过知识付费和海外教育的创业经历。
2025-04-14
降低AIGC查重率的提示语
以下是关于降低 AIGC 查重率的提示语相关内容: 结构化提示词对于控制 AIGC 输出效果有重要作用,但原有的结构化提示词在 DeepSeek 上可能不好使,主要原因包括:详细规定思考步骤限制模型自主思考能力、包含大量低信息价值内容降低信息密度、严格的输出格式要求限制模型表达方式。 针对此问题,可设计新的提示词结构,基础结构如下: 1. 符合角色扮演的,基于 html 标签语法编写格式,好处是不用再学 Markdown 语法,降低学习门槛,有更完善逻辑结构且逻辑可嵌套,但坏处是比 Markdown 语法逻辑负担重,初学者易忘记写闭合标签。 2. 您也可以继续使用 MarkDown,只要抽象出来的元素不瞎换位置就行,因为目前这个次序是实际组合排列测试中效果最好的。 同时,还有关于 AIGC 其他方面的内容,如: 1. AI 将使任何人都能够创建游戏,包括人工智能+人类共同创作工具、提示共享和搜索等方面。 2. AIGC 存在刑事法律风险,如利用 AIGC 传递假新闻、诈骗等,服务提供者应遵循相关规定,采取标识、保存日志、设置反馈机制等措施以确保合规。
2025-04-14
写论文,AI写的部分比较多,如何降低AIGC呢?
以下是一些降低论文中 AIGC 比例的方法和常用的 AIGC 论文检测网站: 降低 AIGC 比例的方法:需要您更多地进行自主思考、研究和创作,减少对 AI 生成内容的依赖。 AIGC 论文检测网站: Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法为上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统分析并提供结果。 这些工具和网站可以帮助教育机构、研究人员和编辑识别 AI 生成的内容,确保学术和出版的原创性和诚信。您可以根据具体需求选择适合的工具来进行检测。
2025-04-13
降低让写论文时aigc查重的提示词
以下是一些可能有助于降低写论文时 AIGC 查重的提示词相关内容: 1. 利用连锁密度法撰写摘要:来自相关文章,您向其索取一篇文章后,需通过重复特定步骤来撰写逐渐简洁、重点突出的摘要。步骤包括找出遗漏的关键要素并编写新的更精炼的摘要,要遵循一系列原则,如与主要内容紧密相关、具体简明、新颖、忠实原文等,最终以 JSON 格式回答,包含“Missing_Entities”和“Denser_Summary”两个键值。 2. 适配 DeepSeek 的结构化提示词:结构化提示词对整理逻辑内容有帮助,当前旧的结构化提示词在 DeepSeek 上不好使的主要原因包括限制模型自主思考能力、包含低信息价值内容、严格的输出格式要求限制表达方式等,应设计新的提示词结构,如基于 html 标签语法的编写格式,其有降低学习门槛、完善逻辑结构等好处,也有逻辑负担重等坏处。 3. RAG 提示工程(二)中的安全与防护实践:文章最初发表于 LangGPT 社区,融入了宝贵见解。提到之前提过的提示词安全问题,展示了某 toC 产品泄漏提示词及模型回复的情况,强调对于生产级应用,安全是第一位的,在讲解更进一步的提示词技术前要先关注提示词安全。
2025-04-11
什么是AIGC
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 又称为生成式 AI,例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目和媒介很多,包括但不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言等。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 GenAI(即生成式 AI)是一种能够从已有数据中学习并生成新的数据或内容的 AI 应用,利用 GenAI 创建的内容即 AIGC。作为一种强大的技术,生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。
2025-04-10
图像翻译
图像翻译具有以下特点和功能: 多语言支持:涵盖 18 种语言,包括中文、英文、法语、日语、韩语和西班牙语。 保护图像主体:可选择不翻译品牌名称或重要信息,避免影响关键内容。 高分辨率处理:支持高达 4000×4000 像素的图像,确保翻译后画质清晰。 原始排版恢复:保留原字体、大小及对齐方式,确保设计一致性。 多行文本合并:将多行文本合并为段落翻译,避免逐行翻译造成误解。 清除文本痕迹:翻译后干净移除原文本,并恢复图像空白区域。
2025-04-14
gpt4o图像生成提示词有哪些
以下是一些 GPT4o 图像生成的提示词示例: 1. 将这张图更改为蓝色氛围,星星图标改为魔法棒图标,同时将里面文案描述的主题改为其他的。 2. 帮我生成一张这样的 UI 设计稿:Peerlist 邀请链接界面分析,界面内容。 3. 一张逼真的照片,描绘了一匹马在宁静的海洋表面从右向左奔驰,准确地描绘了飞溅的水花。 Realistic photograph of a horse galloping from right to left across a vast,calm ocean surface,accurately depicting splashes,reflections,and subtle ripple patterns beneath their hooves.Exaggerate horse movements but everything else should be still,quiet to show contrast with the horse's strength.clean composition,cinematographic.A wide,panoramic composition showcasing a distant horizon.Atmospheric perspective creating depth.zoomed out so the horse appears minuscule compared to vast ocean.horse is right at the horizon where ocean meets sky.use rule of thirds to position horse.size of horse is 1% size of entire image because camera is so far away from subject.camera view is super close to the ground/ocean like a worm's eye view.horse is galloping right where ocean meets the sky 4. 生成一张 2006 年夏天的周六多伦多农夫市场的逼真照片,那天是六月的美好时光,人们在购物和吃三明治。焦点应是一个穿着牛仔工装裤、啜饮草莓香蕉奶昔的年轻亚洲女孩——其余部分可以模糊。照片应让人联想到 2006 年的数码相机拍摄的效果,带有像打印照片一样的日期和时间戳。画幅比例应为 3:2
2025-04-11
图像识别模型
图像识别模型通常包括编码器和解码器部分。以创建图像描述模型为例: 编码器:如使用 inception resnet V2 应用于图像数据,且大部分情况下会冻结此 CNN 的大部分部分,因为其骨干通常是预训练的,例如通过庞大的数据集如图像网络数据集进行预训练。若想再次微调训练也是可行的,但有时仅需保留预训练的权重。 解码器:较为复杂,包含很多关于注意力层的说明,还包括嵌入层、GRU 层、注意力层、添加层归一化层和最终的密集层等。 在定义好解码器和编码器后,创建最终的 TF Keras 模型并定义输入和输出。模型输入通常包括图像输入进入编码器,文字输入进入解码器,输出则为解码器输出。在运行训练前,还需定义损失功能。 另外,还有一些相关模型的安装配置,如 siglipso400mpatch14384(视觉模型),由 Google 开发,负责理解和编码图像内容,其工作流程包括接收输入图像、分析图像的视觉内容并将其编码成特征向量。image_adapter.pt(适配器)连接视觉模型和语言模型,优化数据转换。MetaLlama3.18Bbnb4bit(语言模型)负责生成文本描述。
2025-03-28
gpt4o图像生成
GPT4o 是 OpenAI 推出的具有强大图像生成能力的多模态模型,能够实现精确、准确、照片级真实感输出。其核心功能包括生成美观且实用的图像,如白板演示、科学实验图解等。亮点功能有精确的文本渲染,能在图像中准确生成文字,如街道标志、菜单、邀请函等;支持多样化场景生成,从照片级真实感到漫画风格均可;具有上下文感知能力,能利用内在知识库和对话上下文生成符合语境的内容。技术上通过联合训练在线图像和文本的分布,学会了图像与语言及图像之间的关系,经过后期训练优化,在视觉流畅性和一致性方面表现出色。实际应用场景包括信息传递、创意设计、教育与演示等。但也存在某些场景或细节的限制。安全性方面,OpenAI 强调了保护。目前该功能已集成到 ChatGPT 中,用户可直接体验。 此外,在 3 月 26 日的 AI 资讯汇总中,OpenAI 推出了 GPT4o 图像生成能力。昨晚 Open AI 更新 GPT4o 图像生成功能后,其真正强大之处在于几乎可以通过自然语言对话完成复杂的 SD 图像生成工作流的所有玩法,如重新打光、扩图、换脸、融脸、风格化、风格迁移、换装、换发型等。
2025-03-28
免费增强图像分辨率的
以下是一些免费增强图像分辨率的工具和方法: 1. Kraken.io:主要用于图像压缩,但也提供免费的图像放大功能,能保证图像细节清晰度。 2. Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术放大图像并赋予艺术效果,支持多种滤镜和风格。 3. Waifu2x:提供图片放大和降噪功能,使用深度学习技术提高图像质量,保留细节和纹理,简单易用效果好。 4. Bigjpg:强大的图像分辨率增强工具,使用神经网络算法加大图像尺寸,提高图像质量,处理速度快。 此外,还有以下相关资源: 1. 【超级会员 V6】通过百度网盘分享的 Topaz 全家桶,链接:https://pan.baidu.com/s/1bL4tGfl2nD6leugFh4jg9Q?pwd=16d1 ,提取码:16d1 ,复制这段内容打开「百度网盘 APP 即可获取」。 2. RealESRGAN:基于 RealESRGAN 的图像超分辨率增强模型,具有可选的人脸修复和可调节的放大倍数,但使用几次后要收费。 3. InvSR:开源图像超分辨率模型,提升图像分辨率的开源新工具,只需一个采样步骤(支持 1 5 的材料步骤)即可增强图像,可以高清修复图像。地址、在线试用地址:https://github.com/zsyOAOA/InvSR?tab=readme ov filerailway_car online demo 、https://huggingface.co/spaces/OAOA/InvSR 。 4. GIGAGAN:https://mingukkang.github.io/GigaGAN/ 。 5. Topaz Gigapixel AI:https://www.topazlabs.com/gigapixel ai 。 6. Topaz Photo AI:https://www.topazlabs.com/ 。 7. discord:https://discord.gg/m5wPDgkaWP 。
2025-03-24
图像生成
图像生成是 AIGC 的一个重要领域,离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs)以及 Stable Diffusion 等,以创建与现实世界图像视觉相似的新图像。 图像生成可用于多种场景,如数据增强以提高机器学习模型的性能,也可用于创造艺术、生成产品图像(如艺术作品、虚拟现实场景或图像修复等)。 一些具有代表性的海外项目包括: Stable Diffusion:文本生成图像模型,主要由 VAE、UNet 网络和 CLIP 文本编码器组成。首先使用 CLIP 模型将文本转换为表征形式,然后引导扩散模型 UNet 在低维表征上进行扩散,之后将扩散之后的低维表征送入 VAE 中的解码器,从而实现图像生成。 DALLE 3(Open AI):OpenAI 基于 ChatGPT 构建的一种新型神经网络,可以从文字说明直接生成图像。 StyleGAN 2(NVIDIA):一种生成对抗网络,可以生成非常逼真的人脸图像。 DCGAN(Deep Convolutional GAN):一种使用卷积神经网络的生成对抗网络,可生成各种类型的图像。 在图像生成的用法方面,图像生成端点允许您在给定文本提示的情况下创建原始图像。生成的图像的大小可以为 256x256、512x512 或 1024x1024 像素。较小的尺寸生成速度更快。您可以使用 n 参数一次请求 1 10 张图像。描述越详细,就越有可能获得您或您的最终用户想要的结果。您可以探索 DALL·E 预览应用程序中的示例以获得更多提示灵感。 图像编辑端点允许您通过上传蒙版来编辑和扩展图像。遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,而不仅仅是擦除区域。 AI 绘图 Imagen 3 具有以下功能点和优势: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:能够自动拆解用户输入的 Prompt,并提供下拉框选项。 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队:用户可以直接使用,无需排队。 免费使用:目前 Imagen 3 是免费提供给用户使用的。 交互人性化:提供了人性化的交互设计,如自动联想和下拉框选项。 语义理解:具有较好的语义理解能力,能够根据 Prompt 生成符合描述的图像。 灵活性:用户可以根据自动联想的功能,灵活调整 Prompt 以生成不同的图像。
2025-03-23
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13