以下是为您提供的 AI 入门知识:
知识在大模型中通常被分为两大类。第一类是内置知识,这类知识在模型训练阶段就已经被整合进模型中。我们可以将内置知识进一步细分为三个主要类别:1.常识知识:常识知识包括了日常生活中广泛认可的事实和逻辑规则。这些信息帮助智能体具备了强大的泛化能力,使其在不进行特殊指导下也能进行基本的推理和判断。例如,它包括季节变化、物体的基本物理属性、社会行为准则等。这类知识对于构建智能体的世界观极为重要,使其能够在多种常见场景下作出符合逻辑的反应。1.专业知识:与常识知识不同,专业知识涉及深入特定领域的详细信息。这包括但不限于医学、法律、科技、艺术等领域的专有概念和操作方法。例如,在医学领域中,智能体需要了解疾病症状、治疗方法和药物作用机制;在法律领域,则需掌握法律条文、案例判例及其应用方式。这些专业知识使智能体在特定咨询或操作时更加精准有效。1.语言知识:
在进入word2vec领域之前,让我们先了解一下什么是词嵌入。了解这一点很重要因为word2vec的总结果和输出与算法传递的每个唯一单词的相关联嵌入。词嵌入是一种将单个单词转换为单词数字表示(即向量化)的技术。当每个单词被映射到一个向量时,这个向量就会以一种类似于神经网络的方式被学习。这些向量试图捕捉该单词与整个文本相关的各种特征。这些特征可以包括单词的语义关系、定义、上下文等。有了这些数字化表示,你可以做很多事情,比如确定单词之间的相似性或不相似性。显然,这些作为机器学习各个方面的输入是不可或缺的。机器无法处理原始形式的文本,因此将文本转换为嵌入将允许用户将嵌入输入到经典机器学习模型中。最简单的嵌入是对文本数据进行one-hot编码,每个向量都会映射到一个类别。For example:have =[1,0,0,0,0,0,...0]a =[0,1,0,0,0,0,...0]good =[0,0,1,0,0,0,...0]day =[0,0,0,1,0,0,...0]...然而,像这样的简单嵌入会存在多种限制,因为它们无法捕捉单词的特征,而且根据语料资料库的大小,它们会变得非常大。
学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。