Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

代码生成原理

Answer

代码生成的原理如下:

  • 在 Windows/Linux 上,Cmd K(也称为“Ctrl K”)允许在编辑器窗口中生成新代码或编辑现有代码。如果在按 Ctrl/Cmd K 时未选择任何代码,Cursor 将根据在提示栏中键入的提示生成新代码。
  • Cursor 能够看到您最近的更改,从而预测您下一步要做的事情。
  • 大语言模型在代码生成方面是一个有效的应用场景,例如 Copilot。可以通过一些有效的提示词执行代码生成任务,例如编写简单的用户欢迎程序,或者提供有关数据库架构并要求生成有效的 MySQL 查询,甚至不需要指定要使用的编程语言。
Content generated by AI large model, please carefully verify (powered by aily)

References

Cmd K 命令 K - Overview 概述

If no code is selected when you press Ctrl/Cmd K,Cursor will generate new code based on the prompt you type in the prompt bar.如果在按Ctrl/Cmd K时未选择任何代码,Cursor将根据您在提示栏中键入的提示生成新代码。

Cursor官方:功能介绍

Cursor sees your recent changes,so it can predict what you want to do next.Cursor可以看到您最近的更改,因此它可以预测您下一步要做什么。

提示词示例

大语言模型另外一个有效的应用场景是代码生成。在此方面,Copilot就是一个很好的示例。你可以通过一些有效的提示词执行代码生成任务。让我们来看一下下面的例子。我们先用它写个简单的用户欢迎程序:提示词输出结果你看,我们甚至都不需要指定要使用的编程语言。来,我们再稍微升级一下。下面的例子会向你展示提示词会让大语言模型变得多么强大。提示词输出结果挺厉害的嘛。本例中,我们提供了有关数据库架构并要求它生成有效的MySQL查询。

Others are asking
根据代码生成需求文档的prompt
以下是关于根据代码生成需求文档的 prompt 相关内容: 背景: 手动写 prompt 很麻烦,只想在出现缺陷时修修改改,所以让 GPT 来起草提示词。 结论: 1. 起草效果不错,按照结构化 prompt 结构输出,具有朴实有用的 Skills,符合先后以及事务本身处理顺序的 Workflows,至少有 3 个支持 Workflows 思维链陈述的 Examples。 2. 节省时间以及脑力,Skills、Workflows、Examples 初稿不用再思考。 3. API 接口中“gpt40613”效果可用且优秀,chatGPT 网页版不理解这个提示词,生成稳定,下方是连续测试 4 次的提示词及其效果。 优化方向:暂无 生成需求文档的步骤: 1. 生成设计方案:将需求抽象简化,分别用不同的 Prompt 生成多份设计方案进行对比。通过调整 Prompt 找到最优方案,避免限制 AI 的发挥空间。 2. 生成代码:确定方案后,完善细节,将完整设计交给 AI 生成代码。如果生成结果有问题,通过调整 Prompt 或更换模型反复优化。 关于 prompt 的基础知识: 1. prompt 是一段指令,用于指挥 AI 生成您所需要的内容,每个单独的提示词叫 tag(关键词)。 2. 支持的语言为英语(不用担心英语不好的问题,),另外 emoji 也可以用。 3. 语法规则: 用英文半角符号逗号,来分隔 tag。注意逗号前后有空格或者换行都不影响效果。 改变 tag 权重: :数值从 0.1~100,默认状态是 1,低于 1 就是减弱,大于 1 就是加强。 括号,权重就重 1.1 倍,每加一层括号就反向减弱 1.1 倍。 进行 tag 的步数控制(高级玩法):就是 SD 先按您输入的这个 tag1 开始生成,然后在达到您设定的步数之后,tag1 停止产生作用,此时 tag2 再参与到对内容生成的影响。,数字大于 1 理解为第 X 步前为 tag1,第 X 步后变成 tag2,数字小于 1 理解为总步数的百分之 X 前为 tag1,之后变成 tag2。
2025-03-14
代码生成
以下是关于代码生成的相关内容: 大语言模型在代码生成方面是一个有效的应用场景,例如 Copilot 就是很好的示例。您可以通过有效的提示词执行代码生成任务。比如,可以用它写简单的用户欢迎程序,甚至不需要指定编程语言。还可以进行升级,如提供有关数据库架构并要求生成有效的 MySQL 查询。 在 Cursor 中,Cmd K(在 Windows/Linux 上也称为“Ctrl K”)允许在编辑器窗口中生成新代码或编辑现有代码。按 Ctrl/Cmd K 时出现的栏称为“Prompt Bar”,其工作原理类似于用于聊天的 AI 输入框,您可以正常键入,或使用引用其他上下文。如果未选择任何代码时按 Ctrl/Cmd K,Cursor 将根据您在提示栏中键入的提示生成新代码。对于就地编辑,只需选择要编辑的代码,然后在提示栏中键入即可。 另外,代码生成领域的许多前沿问题已从研究转向工业,关于代码生成和代码代理(如 Devin)的实用工程建议只出现在工业博文和会谈中,而不是研究论文中。
2025-03-01
代码生成
以下是关于代码生成的相关内容: 大语言模型在代码生成方面是一个有效的应用场景,例如 Copilot 就是很好的示例。您可以通过有效的提示词执行代码生成任务。比如,我们可以用它写一个简单的用户欢迎程序,甚至不需要指定使用的编程语言。还可以进行升级,如提供有关数据库架构并要求生成有效的 MySQL 查询。 在 Cursor 中,Cmd K(在 Windows/Linux 上也称为“Ctrl K”)允许在编辑器窗口中生成新代码或编辑现有代码。按 Ctrl/Cmd K 时出现的栏称为“Prompt Bar”,其工作原理类似于用于聊天的 AI 输入框,您可以正常键入,或使用引用其他上下文。如果按 Ctrl/Cmd K 时未选择任何代码,Cursor 将根据您在提示栏中键入的提示生成新代码。对于就地编辑,只需选择要编辑的代码,然后在提示栏中键入即可。 另外,代码生成领域的许多前沿问题已从研究转向工业,关于代码生成和代码代理(如 Devin)的实用工程建议只出现在工业博文和会谈中,而不是研究论文中。
2025-02-27
有哪些AI工具具备文案写作、代码生成、API接口功能
以下是一些具备文案写作、代码生成、API 接口功能的 AI 工具: 1. OpenAI API:可以应用于几乎所有涉及生成自然语言、代码或图像的任务,提供了一系列不同能力级别的模型,适用于不同任务,并且能够微调您自己的自定义模型。 2. Ideogram 2.0:是目前 AI 设计能力较强的工具,文字生成效果好且准确(仅限英文),图像生成效果优于 Flux&Dalle·3,提供 API 接口,方便企业集成高级图像生成功能。 3. Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台,适用于多种语言。 4. Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,适用于改善写作风格和简洁性。 5. ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,特别适合专业写作者。 6. Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快,适合需要快速创作和灵感的用户。 7. Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助用户提高邮件打开率和回复率。
2025-02-25
前端代码生成
以下是关于前端代码生成的相关信息: GPTPilot: 是 AI 开发者伴侣,能从零开始构建整个应用程序,包括编写代码、配置开发环境、管理开发任务、调试代码等,开发者只需监督开发过程。 主要功能包括自动化编码,能生成各种类型的代码,如前端、后端和数据库代码;交互式开发,开发者指定应用类型后,它会提问澄清需求并创建产品和技术要求。 在代码生成质量不断完善的基础上,加上前端项目相关信息的配置页面和生成预览页面、后端代码生成,能面向更多使用者;增加适配更多框架,能面向更多应用平台。 Vercel 发布的前端代码生成平台 v0.dev: 通过语言描述生成界面代码,可直接预览和调整生成的代码,完成后能复制或在 Vercel 上面部署。 目前只能生成 React 和 HTML,由的能力组成,未用其他库,目前需要加入等待列表。 Cursor: 包含强大的自动完成功能,可预测下一次编辑,启用后始终打开,会跨多行建议对代码进行编辑,并能考虑到最近的更改。 可以看到最近的更改,预测下一步要做的事。 能一次建议多个编辑,节省时间。 不小心输入会修复错误。 会预测下一个光标位置,以便无缝导航代码。
2025-01-08
ai如何代码生成
以下是关于 AI 代码生成的相关内容: 使用工作流配置 Code 节点: 可以在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,处理输入参数并返回响应结果。 配置示例可参考。 该节点支持 JavaScript、Python 运行时。 JavaScript 支持 TypeScript,提供静态语言编码体验。内置了 dayjs(版本 1.8.36)和 lodash(版本 4.17.20)两个三方依赖库,运行时遵循列举的大多数 API,具体可用的 API 可在 IDE 内编码时参考代码提示。 Python 内置了 requests_async 和 numpy 两个三方依赖库,requests_async 依赖库与 requests 类似,但需要 await。Python 运行时暂不支持 Http.client 方式的请求。 在节点内的 Code 区域单击 Edit in IDE 可通过 IDE 编辑和调试代码。 使用 AI 生成代码:可以在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,AI 将自动生成代码。也可以选中代码片段,通过快捷键(macOS 为 CommandI、Windows 为 Ctrl+I)唤起 AI,并输入自然语言让 AI 帮助修改代码。 宝玉日报中的代码生成步骤: 步骤 1:生成设计方案,将需求抽象简化,分别用不同的 Prompt 生成多份设计方案进行对比,通过调整 Prompt 找到最优方案,避免限制 AI 的发挥空间。 步骤 2:生成代码,确定方案后,完善细节,将完整设计交给 AI 生成代码。如果生成结果有问题,通过调整 Prompt 或更换模型反复优化。总结来说,要像经理一样管理 AI“员工”,通过明确需求、方案对比、反复优化,提升代码质量与开发效率。相关链接: python 安装 FittenAI 编程助手: 这两年 AI 发展迅猛,编程助手能提供实时建议和解决方案,提升编程效率。 安装前需先安装 python 的运行环境: 安装:点击左上角的 FileSettingsPluginsMarketplace 注册(免费):安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用 智能补全:按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议 AI 问答:通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行对话 自动生成代码:Fitten Code 工具栏中选择"Fitten Code生成代码",然后在输入框中输入指令即可生成代码 代码转换:Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择"Fitten Code–编辑代码",然后在输入框中输入需求即可完成转换 自动生成注释:Fitten Code 能够根据代码自动生成相关注释,通过分析代码逻辑和结构,为代码提供清晰易懂的解释和文档。
2025-01-03
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
从最基本的原理开始讲
以下是为您从最基本的原理开始讲解的相关内容: 强化学习: 从最开始的 K 臂抽奖机器入手讲解了强化学习的基本原理,然后切入到 Qlearning 中学习如何使用 Q 表来进行强化学习,最后再借助神经网络将 Q 表替换成用函数来拟合计算 Q 值。 参考文章: https://lilianweng.github.io/posts/20180123multiarmedbandit/ https://yaoyaowd.medium.com/%E4%BB%8Ethompsonsampling%E5%88%B0%E5%A2%9E%E5%BC%BA%E5%AD%A6%E4%B9%A0%E5%86%8D%E8%B0%88%E5%A4%9A%E8%87%82%E8%80%81%E8%99%8E%E6%9C%BA%E9%97%AE%E9%A2%9823a48953bd30 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95 https://rl.qiwihui.com/zh_CN/latest/partI/index.html https://github.com/ty4z2008/Qix/blob/master/dl.md https://hrl.boyuai.com/ http://zh.d2l.ai/ 苏格拉底辩证法及其第一性原理: 这里所说的“辩证法”,是一种通过提问和回答,深入挖掘、质疑和明确观念的艺术,是始于苏格拉底的、源头上的“辩证法”。这门艺术可通过一系列问题,不断挑战人们对世界的既定认知,揭示其中的矛盾和不足,从而引领人们学会自我反思并走向真理。把 AI 作为方法,就是要用辩证法以对话方式引导出 AI 被预训练的世界级的知识和推理能力,然后使其变成我们可以重复调用的“专家级团队”。既然先进的大语言模型是预训练的、以自然语言对话为交互的,又因为人们创造“概念”是为了对事物达成共识,并能更好地交流,所以我们就选择从对话开始,追本溯源,探索如何对话、如何训练对话能力及如何操纵概念——直达认知事物的第一性原理,然后再回到应用上来。 Stable Diffusion: 从艺术和美学的角度来看,扩散模型可以被理解为一种创作和表达过程,其中的元素通过互动和影响,形成一种动态的、有机的整体结构。 前向扩散过程是一个不断加噪声的过程。例如,在猫的图片中多次增加高斯噪声直至图片变成随机噪音矩阵。对于初始数据,设置 K 步的扩散步数,每一步增加一定的噪声,如果设置的 K 足够大,就能够将初始数据转化成随机噪音矩阵。扩散过程是固定的,由 Schedule 算法进行统筹控制。同时扩散过程也有一个重要的性质:可以基于初始数据 X0 和任意的扩散步数 Ki,采样得到对应的数据 Xi 。 反向扩散过程和前向扩散过程正好相反,是一个不断去噪的过程。将随机高斯噪声矩阵通过扩散模型的 Inference 过程,预测噪声并逐步去噪,最后生成一个小别墅的有效图片。其中每一步预测并去除的噪声分布,都需要扩散模型在训练中学习。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25