Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

sd和comfy的详细学习教程推荐

Answer

以下是关于系统学习 SD 和 Comfy 的详细教程推荐:

学习 SD 提示词的步骤:

  1. 学习基本概念:了解 Stable Diffusion 的工作原理和模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分(主题词、修饰词、反面词等)。
  2. 研究官方文档和教程:通读 Stable Diffusion 官方文档,研究来自开发团队和专家的教程和技巧分享。
  3. 学习常见术语和范例:熟悉 UI、艺术、摄影等相关领域的专业术语和概念,研究优秀的图像标题和描述作为提示词范例。
  4. 掌握关键技巧:学习如何组合多个词条来精确描述想要的效果,掌握使用“()”、“”等符号来控制生成权重的技巧,了解如何处理抽象概念、情感等无形事物的描述。
  5. 实践和反馈:使用不同的提示词尝试生成各种风格和主题的图像,对比提示词和实际结果,分析原因,总结经验教训,在社区内分享结果,请教高手,获取反馈和建议。
  6. 创建提示词库:根据主题、风格等维度,建立自己的高质量提示词库,将成功案例和总结记录在案,方便后续参考和复用。
  7. 持续跟进前沿:关注 Stable Diffusion 的最新更新和社区分享,及时掌握提示词的新技术、新范式、新趋势。

相关入门教程链接:

  1. Nenly:Stable Diffusion 零基础入门课学习资料汇总
  2. 工具教程:Stable Diffusion
  3. Stable Diffusion 新人视频教程
  4. 教程:视频教程
  5. SD 入门教程
  6. 工具:SD 插件汇总
  7. 工具:姿势参考图网站
  8. 教程:超详细的 Stable Diffusion 教程
  9. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 - 知乎

关于 Comfy 的学习,您可以参考以下知乎教程中的相关部分:教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 - 知乎,其中包含零基础使用 ComfyUI 搭建 Stable Diffusion 推理流程的内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何系统学习 SD 的提示词

学习Stable Diffusion的提示词是一个系统性的过程,需要理论知识和实践经验的相互结合。以下是一些建议的步骤:1.学习基本概念-了解Stable Diffusion的工作原理和模型架构-理解提示词如何影响生成结果-掌握提示词的组成部分(主题词、修饰词、反面词等)2.研究官方文档和教程-通读Stable Diffusion官方文档,了解提示词相关指南-研究来自开发团队和专家的教程和技巧分享3.学习常见术语和范例-熟悉UI、艺术、摄影等相关领域的专业术语和概念-研究优秀的图像标题和描述,作为提示词范例4.掌握关键技巧-学习如何组合多个词条来精确描述想要的效果-掌握使用"()"、""等符号来控制生成权重的技巧-了解如何处理抽象概念、情感等无形事物的描述5.实践和反馈-使用不同的提示词尝试生成各种风格和主题的图像-对比提示词和实际结果,分析原因,总结经验教训-在社区内分享结果,请教高手,获取反馈和建议6.创建提示词库-根据主题、风格等维度,建立自己的高质量提示词库-将成功案例和总结记录在案,方便后续参考和复用7.持续跟进前沿-关注Stable Diffusion的最新更新和社区分享-及时掌握提示词的新技术、新范式、新趋势

第一期:上班的你

[Nenly:Stable Diffusion零基础入门课学习资料汇总](https://waytoagi.feishu.cn/wiki/BrFcwz5MviFVxukw6Esc9w5PnIf)[工具教程:Stable Diffusion](https://waytoagi.feishu.cn/wiki/FUQAwxfH9iXqC9k02nYcDobonkf)[Stable Diffusion新人视频教程](https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe)[教程:视频教程](https://waytoagi.feishu.cn/wiki/KNFbwWnRJiWSgzksGu3cUDtjn8K)[SD入门教程](https://waytoagi.feishu.cn/wiki/PyZqwOe44i6YfekQ0C5ca8tPnKd)[工具:SD插件汇总](https://waytoagi.feishu.cn/wiki/XdL6wID2vigf82kUyXWcFWMFnDh)[工具:姿势参考图网站](https://waytoagi.feishu.cn/wiki/J4mFwcvzAid0zVkHVS4ccRtynfc)[教程:超详细的Stable Diffusion教程](https://waytoagi.feishu.cn/wiki/ZrpPwKPwji25KmkKVxmcT686nfh)[教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识-知乎](https://waytoagi.feishu.cn/wiki/KmLnwzgkLidzfykk2TMcw885nae)

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

1.Stable Diffusion系列资源2.零基础深入浅出理解Stable Diffusion核心基础原理2.1通俗讲解Stable Diffusion模型工作流程(包含详细图解)2.2从0到1读懂Stable Diffusion模型核心基础原理(包含详细图解)2.3零基础读懂Stable Diffusion训练全过程(包含详细图解)2.4其他主流生成式模型介绍3.Stable Diffusion核心网络结构解析(全网最详细)3.1 SD模型整体架构初识3.2 VAE模型3.3 U-Net模型3.4 CLIP Text Encoder模型3.5 SD官方训练细节解析4.从0到1搭建使用Stable Diffusion模型进行AI绘画(全网最详细讲解)4.1零基础使用ComfyUI搭建Stable Diffusion推理流程4.2零基础使用SD.Next搭建Stable Diffusion推理流程4.3零基础使用Stable Diffusion WebUI搭建Stable Diffusion推理流程4.4零基础使用diffusers搭建Stable Diffusion推理流程4.5 Stable Diffusion生成示例5.Stable Diffusion经典应用场景5.1文本生成图像5.2图片生成图片5.3图像inpainting5.4使用controlnet辅助生成图片5.5超分辨率重建6.从0到1上手使用Stable Diffusion训练自己的AI绘画模型(全网最详细讲解)6.0 Stable Diffusion训练资源分享6.1 Stable Diffusion模型训练初识6.2配置训练环境与训练文件6.3 SD训练数据集制作6.4 Stable Diffusion微调(finetune)训练

Others are asking
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
sd教程
以下是关于 SD 的一些教程: 用 SD 做二维码: 好看的二维码欣赏:第一个就是 qrbtf。 最近新出了融合二维码教程。 方法原文地址:https://stablediffusionart.com/qrcode/ 相关帖子展示了使用 Stable Diffusion 创建的艺术二维码,是使用定制训练的 ControlNet 模型生成的,人们也想出了在无自定义模型情况下制作 QR 码的方法。 用 SD 做中文文字(持续更新中): 制作思路: 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 输入关键词,如奶油的英文单词,Cream+Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 打开高清修复,分辨率联系 1024 以上,步数:2960。 参考视频教程:【“牛逼”的教程来了!一次学会 AI 二维码+艺术字+光影光效+创意 Logo 生成,绝对是 B 站最详细的 Stable Diffusion 特效设计流程教学!AI 绘画进阶应用哔哩哔哩】https://b23.tv/c33gTIQ SD 的各种实践教程: 线稿上色 Midjourney+Stable Diffusion:https://waytoagi.feishu.cn/wiki/AsbYwmfS6ikhr3kNsCocdPMEnUd 猫咪狗狗 lora:https://waytoagi.feishu.cn/wiki/JiQewVbOHi7tzakS23ecprxsnfg 字体设计机甲战士:https://waytoagi.feishu.cn/wiki/GUQ3w52elisr9ukIgkBc42UmnWd 做盲盒平面变 3D:https://waytoagi.feishu.cn/wiki/SCK8wV4PTiHQVKkvGRUcx0fcnTe MJ 出图 SD 放大:https://waytoagi.feishu.cn/wiki/E88nwOtk9ilRQskg3Qlc6ZHpnTf 七夕字体和图:https://waytoagi.feishu.cn/wiki/BjQ1wLRv0ivCLtk136VchSCqnpU 可爱毛粘字体:https://waytoagi.feishu.cn/wiki/NjhbwF1cTiQ5Xjkd3tNc1OWynZd
2025-04-08
绘画工具sd怎么使用?
以下是关于绘画工具 SD 的使用方法: 1. 生成超大图像: 若想用 SD 绘制超高分辨率图片(如 10000x768 的清明上河图),直接调分辨率不可行,会爆显存,正常尺寸设置最高到 2048。 先在 PS 中设置所需大尺寸画布,保存为 jpg 图片。 将图片放入 ControlNet 中,点击右下角箭头,将图片尺寸信息发送到生成设置。 填入正反向提示词,启用 Tiled Diffusion 插件,其中方案选择 Mixture of Diffusers,可防止接缝产生。 2. 提示词标签选择: 按顺序选择标签词,如女孩、白头发、蓝眼睛等。 选择画质和视角,如最好的质量、杰作、从人物角度往下看等。 选择艺术风格,如皮克斯动画、轮廓光。 填写负面提示词,点击选框结尾的“负面”。 模型选择“revAnimated”,调整尺寸后点击生图。 3. 真人转二次元及图生图: 使用【X/Y/Z plot】脚本做参数对比,设置 X 轴为提示词相关性(取值范围 130,每次增加 5),Y 轴为重绘幅度(取值范围 01,每次增加 0.2)。 提示词相关性在 6—11 中间为最佳,重绘幅度大小可控制生成图与原图相似度。 可使用绘图功能增加或修改元素,如增加红色眼镜、去掉衣服图案、更换头部或修改帽子部分等。
2025-04-01
comfyui 与 SD 功能上有啥区别
ComfyUI 与 SD 在功能上主要有以下区别: 1. 工作原理:ComfyUI 更接近 SD 的底层工作原理。 2. 自动化工作流:ComfyUI 具有更出色的自动化工作流,能够消灭重复性工作。 3. 后端工具:ComfyUI 作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 API 等。 4. 定制开发:可根据定制需求开发节点或模块。 5. 应用场景:例如在抠图素材方面,ComfyUI 能根据需求自动生成定制的抠图素材。 6. 与其他软件的结合:如与 Blender 整合,从工作流程上天然适配。 7. 工作流搭建:ComfyUI 以连线方式搭建工作流,可通过改变节点实现不同功能,具有更高的自由和拓展性,能根据自身需求搭建和改造工作流。
2025-03-28
我是一名电商设计师,现在想学习SD AI绘图,有一点基础,但学习课程资源有限,请你帮我制定一份详细的学习计划,并提供一些学习资源。
以下是为您制定的学习 SD AI 绘图的详细计划及相关学习资源: 学习计划: 1. 首先,深入学习 Stable Diffusion 的核心基础原理,包括模型工作流程、核心基础原理、训练全过程以及其他主流生成式模型介绍。 2. 接着,掌握 Stable Diffusion 的核心网络结构,如 SD 模型整体架构、VAE 模型、UNet 模型、CLIP Text Encoder 模型等。 3. 学习从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的不同方式,如使用 ComfyUI、SD.Next、Stable Diffusion WebUI、diffusers 搭建推理流程,并查看生成示例。 4. 了解 Stable Diffusion 的经典应用场景,如文本生成图像、图片生成图片、图像 inpainting、使用 controlnet 辅助生成图片、超分辨率重建等。 5. 最后,尝试从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型,包括配置训练环境与训练文件,以及基于 Stable Diffusion 训练 LoRA 模型。 学习资源: 1. 教程:深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎。 目录涵盖了 Stable Diffusion 系列的各个方面,包括核心基础知识、网络结构解析、搭建推理流程、应用场景和模型训练等。 2. SD 模型权重百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 模型,即可获得资源链接,包含多种模型权重。 3. SD 保姆级训练资源百度云网盘: 关注 Rocky 的公众号 WeThinkIn,后台回复:SDTrain,即可获得资源链接,包含数据处理、模型微调训练以及基于 SD 的 LoRA 模型训练代码全套资源。 4. Stable Diffusion 中 VAE,UNet 和 CLIP 三大模型的可视化网络结构图下载: 关注 Rocky 的公众号 WeThinkIn,后台回复:SD 网络结构,即可获得网络结构图资源链接。
2025-03-28
SD如何部署
SD 的部署方式如下: 1. 本地部署(Win 系统): 系统要求:Win10 或 Win11。 查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:需要满足 3 个要求(推荐),电脑运行内存 8GB 以上,是英伟达(NVIDA)的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),可查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存;查看电脑显卡内存(显存),4GB 显存可运行 SD,推荐 8GB 以上显存。 配置达标跳转至对应安装教程页:。 一键式安装: 电脑配置能支持 SD 运行的朋友们,可使用 B 站秋叶分享的整合包。 具体安装方法: 打开链接 https://pan.baidu.com/s/1hY8CKbYRAj9RrFGmswdNiA?pwd=caru ,下载《1.整合包安装》,存放到电脑本地。 打开保存到电脑里的文件夹。 打开文件夹《1.秋叶整合包主包》,鼠标右击文件,点击“解压文件”。 选择解压到 D 盘或者 E 盘,小心 C 盘被占满,点击确定。 解压完成后,来到第二个文件夹,双击里面的文件,点击安装。 打开刚刚解压保存的 SD 的根目录,找到启动器,鼠标右击启动器,点击“发送到”,桌面快捷方式。 双击启动器,等待更新,接着点击左边第二个“高级选项”,在显存优化里,根据自己电脑的显存选择(就是上面查看的专用 GPU 内存),自己电脑是多少就选多少。 回到第一个一键启动,点击右下角的一键启动。出现代码页面不用管,等一下就行了,SD 的主界面会自动在网页上弹出来。如果出现报错,可以回到最开始的界面,在左边点击“疑难解答”,再点击右边的“开始扫描”,最后点击“修复”按钮。 2. 云端部署: 部署流程: 安装和配置基础环境:浏览器上按照腾讯云>控制台>云服务器的路径找到你刚才购买的实例,点击启动,就会新开一个远程访问的窗口,输入你购买时设置的密码,进入,这样你就有了一个远程的 Windows 系统环境,接下来安装显卡驱动、配置环境变量即可。 安装显卡驱动:用内置的 IE(也可下载 Chrome),打开英伟达的网站,找到驱动下载,选择购买机器时选定的显卡型号、Windows 版本号,下载对应的驱动,然后安装上。 配置环境变量:驱动安全完成后,开始配置环境变量。首先先找到你安装后驱动所在的目录,如果没有特殊设定的话,一般是在「C:\\Program Files\\NCIDIA Corporation」这里,复制这个路径,找到环境变量配置入口(控制面板>系统和安全>系统),选择「高级系统设置」,弹窗设置环境变量,找到「系统变量」里的 Path 环境变量,点击「编辑...」,然后「新建」,帮刚才复制的 nvidia 驱动安装地址粘贴进去,保存即可。 备选:SD 好难,先试试简单的无界 AI:
2025-03-25
sd 换脸
以下是关于 SD 换脸插件 Roop 的详细步骤: 1. 勾选包含 Python 和 C++包等相关项目,更改安装位置后点击右下角安装。安装时间较长,需耐心等待。 2. 安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”并回车,在打开的 dos 界面粘贴“python m pip install insightface==0.7.3 user”代码,自动安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),在云盘后台回复【SD】可下载。 3. 安装完成后,重新打开启动器,后台会继续下载一些模型,全程要保证科学上网。 4. 选用真实系模型“realisticVisionV20”,关键词描述相关内容生成照片。 5. 启用 ROOP 插件,选择要替换的人物照片,面部修复选择“GFPGAN”,根据需求设置右边的参数数值和放大算法,点击生成。 6. 若生成的人脸像素偏低、模糊,可将图发送到“图生图”,开较小的重绘幅度,然后使用 controlnet 中的 tile 模型进行重绘。 此插件主要适用于真实人脸替换,对二次元人物作用不大。在使用时要谨慎,切勿触犯法律。若想要此插件,可添加公众号【白马与少年】,回复【SD】即可。推荐使用最新的秋叶整合包,出错概率最小,且科学上网很重要。
2025-03-19
deepseek官方教程
以下是关于 DeepSeek 的官方教程相关信息: 火山方舟 DeepSeek 申请免费额度教程,包含多种 API 使用方式,如飞书多维表格调用、Coze 智能体调用、浏览器插件调用。可以使用邀请码 D3H5G9QA,通过邀请链接 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA 邀请可拿 3000 万 tokens,畅享 671B DeepSeek R1,活动截止至北京时间 20250218 23:59:59。同时,火山方舟大模型服务平台的模型服务计费文档有更新,DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动。 有关于一线教师的 AI 需求与高效工具推荐,如让模型创作诗歌、生成宣传标语、提示库(https://apidocs.deepseek.com/zhcn/promptlibrary)、代码解释、内容分类、角色扮演(自定义人设)、散文写作、文案大纲生成、模型提示词生成等。 2 月 14 日的社区动态中,有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》等内容,还附上了飞书多维表格、Coze 的接入使用方法等。此外,还有关于 DeepSeek 关键 9 篇论文及创新点的讲解,以及 DeepSeek 官方发布的 R1 模型推荐设置。
2025-04-15
Mcp教程
以下是关于 MCP 教程的相关内容: 资源链接: 什么是 MCP 以及为什么要用它: Model Context Protocol(模型上下文协议),简称 MCP,是由 Anthropic 公司提出的一个开放标准,旨在解决 AI 模型与外部数据源和工具之间的连接问题。 MCP 就像是 AI 世界的“USBC 接口”,它提供了一种标准化的方式,让 AI 应用能够轻松连接到各种数据源和工具,不需要为每个新连接重新开发接口。 MCP 解决的主要问题包括: 碎片化集成:以前每个 AI 应用都需要单独开发与各种数据源的连接。 重复工作:不同团队重复构建相似的集成方案。 “N 乘 M 问题”:当有 N 个 AI 客户端需要连接 M 个数据源时,可能需要 N×M 个自定义集成。 希望这篇教程能帮助您了解 MCP 的基础知识,并开始构建自己的 MCP 服务器!随着实践的深入,您会发现 MCP 为 AI 应用与数据源及工具的集成提供了简单而强大的解决方案。 本篇内容由 Genspark 制作 https://www.genspark.ai/autopilotagent_viewer?id=c10e49b3228d4f65be347ab34777aaf8
2025-04-15
coze 教程
以下是为您提供的 Coze 教程相关信息: 一泽 Eze 的教程:可能是全网最好的 Coze 教程之一,一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。阅读指南:长文预警,请视情况收藏保存。核心看点包括通过实际案例逐步演示用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。适合人群为玩过 AI 对话产品的一般用户,以及对 AI 应用开发平台(如 Coze、Dify)和 AI Agent 工作流配置感兴趣的爱好者。注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 其他相关基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ)
2025-04-13
如何使用MCP?提供教程
以下是关于如何使用 MCP 的详细教程: 前置准备工作: 任选一个客户端软件进行配置,大致分为四步: 1. 填入大模型 API 密钥。 2. 找到 MCP 配置界面。 3. 填入 MCP Server 对应的 json 脚本。 4. 使用 MCP。 不同客户端软件的配置方法: 1. Cherry Studio(推荐): 版本:2025 年 4 月发布的 1.1.17。 配置大模型 API:填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP:例如,图中填写的就是 Playwright 的 MCP Server 和百度地图的 MCP Server。 使用 MCP。 2. Cursor(推荐): 配置大模型 API:如果 Cursor Pro 在免费试用期,这一步可以不做;如果不在免费试用期,最好的办法是氪金,也可以试试填入之前准备好的 AiHubMix 的 API 密钥。 配置 MCP Server:填入 MCP Server 的 json,保存。 回到 Cursor 的 MCP 配置页面,等待几秒钟,多点几次蓝色框里的按钮,直到绿灯亮起,并显示出所有 MCP 工具。 使用 MCP:Ctrl+Shift+L 新建对话,将模式设置为 Agent。 3. Claude Desktop: 配置 MCP Server:用文本编辑器(VSCode、Sublime Text 等)打开 claude_desktop_config.json 文件,填入 MCP Server 对应的 json 文件,保存。 重启 Claude Desktop。 查看 MCP Server 连接状态。 使用 MCP。 MCP 的好处: 1. 简化开发:一次整合,多次复用,不再重复开发。 2. 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 3. 实时互动:长连接保证数据实时更新。 4. 安全可靠:内置标准化安全和权限控制。 5. 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 传统 API 更适合的场景: 1. 需要细粒度控制、功能严格限制。 2. 更偏好紧耦合以提升性能。 3. 希望最大化交互的可预测性。 快速集成 MCP 的步骤: 1. 定义能力:明确您的 MCP 服务器提供哪些功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接您的数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 MCP 与 API 的比较: MCP 与传统 API 之间的主要区别在于: 1. 单一协议:MCP 充当标准化的“连接器”,因此集成一个 MCP 意味着可能访问多个工具和服务,而不仅仅是一个。 2. 动态发现:MCP 允许 AI 模型动态发现可用工具并与之交互,而无需对每个集成进行硬编码知识。 3. 双向通信:MCP 支持持久的实时双向通信 类似于 WebSockets。AI 模型既可以检索信息,也可以动态触发操作。 以 Cursor 驱动 blender 自动化建模的 MCP 项目为例: 首先,在 github 上找到项目说明(https://github.com/ahujasid/blendermcp)。以 Mac 安装为例,首先要安装一个 uv 包(如果不懂,就直接新建一个项目文件夹后,将相关需求丢给 AI)。显示 uv 安装完毕后(初次使用可能需要安装一系列的环境,只要一路让 AI 安装就可以了),还是找到点击界面右上角的小齿轮图标。找到 MCP 模块 Add new global MCP server,将相关内容粘贴进去。退回 MCP 界面时,就会发现已经连接上了这个 blender 服务器,并且增加了很多具体功能。
2025-04-13
AI视频教程
以下是为您提供的 AI 视频教程相关内容: AI 让古画动起来的教程: 1. 对于简单的图,找原图直接写提示词即可。若碰到多人多活动的复杂图,需把长图分多个模块,比如将一张图分成 4 个模块。 2. 智能抠图,用工具把要动的内容去除掉,用 AI 生成图片部分。若有水印,可以把图片向下拓展一部分,然后截掉。 3. 将要拿来动起来的部分抠出,放在绿幕背景里或者画的背景颜色,导出图片。 4. 用 AI 视频生成工具写入提示词让图片动起来,如即梦、海螺、混元等工具,不停尝试抽卡。 5. 用剪映把抽卡合格的视频放在去掉内容的背景图片,通过色度抠图调整去掉视频的背景。多个视频放在背景图片,一起动即可。 AI 视频相关的软件教程: 包括视频模型如 luma Dream Machine、可灵、MiniMax 海螺 AI、Sora、Vidu 等,工具教程如 Hedra,视频工具如 VIGGLE,以及应用教程如视频转绘、视频拆解等。相关链接如下: WaytoAGI X 剪映的 AI 创意视频征集令·第 1 期: 1. 征集内容:使用 AI 功能创作的创意视频成片,也可投稿 AI 创意视频的教程(教大家如何做一个 AI 创意视频)。AI 功能包括但不限于:AI 对口型、AI 改动作、AI 配音、克隆音色、AI 音乐、AI 特效、AI 图文成片、AI 剪视频等。不包括纯图片生成或纯视频生成的内容(特指用 AI 工具生成的图片、图生视频,但视频里没有添加 AI 功能)。 2. 创作工具:主要使用「剪映」平台工具创作,可多使用剪映平台的 AI 功能/新功能;部分 AI 效果若剪映无法实现,可使用其他软件创作。 3. 内容价值:视频需有消费价值,要有一定内容主题,有故事感、或者有梗、或者有核心观点表达,让用户有持续观看和点赞、收藏的欲望。缺少内容主题、过于简单、过于模板化的内容将不予通过。在抖音、小红书等平台点赞量高的内容,审核通过率大大提升! 4. 原创度:作品需要原创、极具创意和独特性,且符合当代年轻群体的审美和兴趣喜好,不可照搬、抄袭他人创意,一经发现将取消活动奖励,视情节严重情况回收灵感发布权限。 5. 作品延展度:作品有可模仿性,其他创作者看完后,可模仿学习或二创。比如:前期素材易获取,后期素材易剪辑或处理,让其他视频创作者有强烈的模仿欲望,且对自己模仿或二创视频有成就感和分享欲。 6. 作品时长:时长适中,最短不低于 15 秒,最长不建议超过 3 分钟。
2025-04-13
AI出设计图教程
以下是关于 AI 出设计图的教程: 使用 Midjourney 生成 UI 界面: 页面指令:指定生成某个页面(如首页、登录页等),只需添加页面指令描述,如“landing page”(登录页)、“Profile Page”(个人资料页)。 社交平台:关键词“landing page”可生成社交平台的登录页设计。 信息类:关键词“Profile Page”可生成人力资源类产品的个人资料页,包含照片、自我介绍、基本信息等内容。 Midjourney 产出的设计图视觉效果不错,适合在 APP 设计的初始阶段,如头脑风暴和风格探索中为设计师提供灵感和创意。但目前要直接用于开发仍有距离。 使用 Claude 生成设计稿的技巧: 引用 Tailwind CSS 写组件样式,确保色彩、响应式和基础组件的美观度。 按照特定的四个技巧可让 Claude 设计出美观的界面或组件。 生成设计稿的方法:将生成的代码部署到线上,使用 html.to.design 这个 Figma 插件将网页转换为设计稿,但每天免费次数有限。 进阶技巧和关键词: 图片内容一般分为二维插画和三维立体两种表现形式。 主题描述:可描述场景、故事、元素、物体或人物细节等。描述场景中的人物时应独立描述,避免长串文字,否则 AI 可能识别不到。 设计风格:可通过找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成相应风格的图片。对于材质的描述,关键词的运用较为复杂,需要针对特定风格进行“咒语测试”。
2025-04-12
我要根据PPT开发一个网页,请详细提供操作步骤和选择哪一个AI工具更合适。
以下是根据 PPT 开发网页的详细操作步骤以及适用的 AI 工具: 一、生成 PDF 1. 将您的文件转换为 PDF 格式,其他文件格式也可行,但 PDF 效果更佳。 2. 若希望在文章中加入图片,需将图片转换为 Markdown 格式。 网络图片:直接复制图片的 URL,右键图片选择复制 URL,然后用 Markdown 格式写入文档。 自己的图片:使用图床服务(如 https://sm.ms/)托管图片,生成公链。 3. 插入视频:先将本地视频上传到公网(如 B 站),在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项获取 URL,用 Markdown 格式写入。 二、适用的 AI 工具 1. 爱设计 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 2. MindShow 网址:https://www.mindshow.fun//home 输入大纲和要点: 导入大纲和要点 输入主题自动生成大纲和要求 选择模版并生成 PPT 导出 3. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制(相对耗时) 导入方式:复制最终大纲内容到本地 txt 文件,将后缀改为.md(若看不见后缀可自行搜索开启),打开 Xmind 软件导入 md 文件,在 Process ON 导入 Xmind 文件。 输入主题自动生成大纲和要求:新增思维导图,输入主题点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版再点击下载。若喜欢使用且无会员,可在某宝买一天会员。
2025-04-13
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
AI提示词超详细版本
以下是关于 AI 提示词的超详细内容: 在图像和视频生成阶段,分镜转图片和视频提示词大师的使用技巧包括:每次只处理 2 3 个分镜以确保提示词的精确性;对于关键场景,生成多个版本的提示词;根据不同工具的特点调整提示词的细节。图像生成工具方面,首选 LIBLIB 的 FLUX 模型,其次是谷歌的 ImageFX(网址:https://labs.google/fx/zh/tools/imagefx ,有网络门槛),还有即梦、可灵、Midjourmey(国内版“悠船”)。提示词辅助工具方面,通义万相的智能扩写只需输入简单的画面主题,点击“智能扩写”按钮就能自动生成包含场景描述、主体特征、构图和光线氛围等全方位的详细提示词;堆友的图推词功能可通过上传参考图片,自动分析并反推出详细的提示词。接入 Deepseek R1 的即梦,只需输入简单的主题或关键词,R1 就能写出 4 段不同风格且详细又丰富的提示词。 此外,还有一套万能文生图提示框架,您只需把脑子里能想到的、用来描述模糊想法的碎片词汇,随手替换到框架的最下方,然后发给任意一个 AI。但要注意,AI 生成的提示词水平与模型本身能力正相关,推理模型在揣摩人类意图上优于普通模型。 在写 AI 拟人化提示词时,要像写作文的 6 要素一样讲明白。描述越全面,生成的结果就越贴近想要的样子,但要注意避免啰里啰嗦导致 AI 理解出现偏差。您还可以把想要的直接塞给 LLM,让它进行补充。
2025-04-10
如何详细的学习AI
以下是详细的学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,学习 AI 都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-03-28
如果一个不懂技术的人学习AI,应该怎么做?请列定详细的步骤。
以下是一个不懂技术的人学习 AI 的详细步骤: 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,进行实践来巩固知识,尝试使用各种产品做出自己的作品。 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考以下具体的开发示例: 1. 以“Windsurf 学习共创社区”为例,进行零基础开发网站 技术选型:Vue + TypeScript(无需先了解具体含义)。 目标用户:零基础开发学习者。 参考项目:Cursor101。 开发流程: 需求分析与代码生成。 环境配置自动化。 问题诊断与修复。 界面优化与细节打磨。 功能迭代与完善。 2. 搭建对接 GPT 大模型的微信聊天机器人 选用技术组件:极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker。 按照详细的配置步骤操作:购买服务器、配置宝塔面板,部署 Docker 和 COW 组件,绑定微信号。 了解费用问题:包括极简未来平台的费用和腾讯云服务器的费用,以及如何通过积分和优惠降低成本。 掌握运维问题的解答:学会简单高效地管理和维护服务器和服务,以及遇到问题时的解决方案。 如果在学习过程中有任何不懂的地方,可以随时寻求帮助。同时,还可以加入免费的 AI Agent 共学群,获取更多玩法和经验分享以及最新的 AI 前沿资讯。
2025-03-28
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28