Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能入门

Answer

以下是为新手提供的人工智能入门学习指南:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。

此外,还有以下相关资源:

  • 适用于 JavaScript 的 AI 堆栈入门:原文链接 https://a16z.com/2023/06/21/the-getting-started-with-ai-stack-for-javascript/ 。
  • 微软 AI 初学者入门课程:译者 Miranda,课程原网址 https://microsoft.github.io/AI-For-Beginners/ 。在本课程中,您将深入学习符号人工智能、神经网络、计算机视觉、自然语言处理等内容,还能学到实现人工智能的不同方法、神经网络和深度学习、处理图像和文本的神经架构,以及不太流行的人工智能方法,如遗传算法和多智能体系统。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

学习人工智能(AI)是一个既刺激又富有挑战的旅程,它将带领你进入一个充满创新和发现的世界。如果你想开始学习AI,这里有一份详细的学习路径指南,可以帮助你从基础概念到实际应用,逐步建立起你的AI知识体系。1.了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。1.开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。1.选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。

适用于 JavaScript 的 AI 堆栈入门

原文链接:https://a16z.com/2023/06/21/the-getting-started-with-ai-stack-for-javascript/翻译:通往AGI之路,若有瑕疵之处,请在段落评论中斧正,谨此致谢发表时间:2023年6月21日如果不使用新的软件基础设施技术,很难理解它们。至少,这是a16z基础设施团队的发现-因为我们中的许多人的职业生涯都是从程序员开始的,我们通常通过实践学习。这在生成式人工智能浪潮中尤为明显,这股浪潮来得如此之快、如此壮观,以至于好的文档通常落后于代码几个月。因此,为了更好地理解这个领域,我们围绕大型语言模型(LLM)、大型图像模型、向量数据库等建立了一些项目。在这个过程中,我们注意到由于所有这些都是如此新颖且变化如此迅速,实际上没有好的框架可以快速入门。每个项目都需要大量的样板代码和集成。坦率地说,这很麻烦。因此,我们着手创建一个非常简单的[“入门人工智能”模板](https://github.com/a16z-infra/ai-getting-started),供那些想要尝试核心技术但又不想过多考虑授权、托管和工具选择等辅助问题的人使用。

微软AI初学者入门课程

译者:Miranda,课程原网址https://microsoft.github.io/AI-For-Beginners/通过微软为期12周、共24课时的课程,一起来探索人工智能(AI)的世界!在本课程中,你将深入学习符号人工智能(Symbolic AI)、神经网络(Neural Networks)、计算机视觉(Computer Vision)、自然语言处理(Natural Language Processing)等内容。如果想提升学习效果,可以亲身实践课程内容、做随堂小测试或根据课程内容开展实验。这套课程是由专家设计的人工智能综合指南,它非常适合初学者,覆盖了TensorFlow、PyTorch及人工智能伦理原则。今天就开始你的人工智能之旅吧!在本课程中,你将学到:实现人工智能的不同方法,包括使用了知识表示和推理的符号人工智能,它是一种“有效的老式人工智能”([GOFAI](https://en.wikipedia.org/wiki/Symbolic_artificial_intelligence))。神经网络和深度学习,它们是现代人工智能的核心,我们将使用两个最流行的框架([TensorFlow](https://www.tensorflow.org/)和[PyTorch](https://pytorch.org/))中的代码来说明这两个主题背后的重要概念。处理图像和文本的神经架构,我们将介绍最新的模型,但在最前沿的信息上可能会有所欠缺。不太流行的人工智能方法,如遗传算法(Genetic Algorithms)和多智能体系统(Multi-Agent Systems)。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
有没有优质的系统的coze入门网课?
以下是一些优质的系统的 Coze 入门网课推荐: 另外,还有“一泽 Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力”,这可能是全网最好的 Coze 教程(之一),即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。其核心看点包括通过实际案例逐步演示用 Coze 工作流构建能够稳定按照模板要求生成结构化内容的 AI Agent、开源 AI Agent 的设计到落地的全过程思路、10+项常用的 Coze 工作流的配置细节、常见问题与解决方法等。适合任何玩过 AI 对话产品的一般用户,以及希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。但需注意,本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。
2025-04-14
七天入门计划
以下是为您提供的七天入门 AI 的计划建议: 第一天: 开始接触李宏毅的生成式人工智能课程。 资源:在 B 站直接搜索《李宏毅 2024 春《生成式人工智能导论》。 第二天至第十四天: 抽空陆续花 2 周时间学完李宏毅的课程。 第五天: 研究并开始使用 Kimi。 参考资料: 。 抱着每天向 kimi 问 100 个问题的心态,调整自己的思考模式,在工作和生活中养成有问题问 AI 的习惯。您还可以参考公众号文章【每天问 Kimi 们 100 个问题,你就 AI 入门了】。 在学习过程中,建议做好笔记,总结所学知识和心得体会,以便更好地掌握和应用。
2025-04-13
给我提供一份清华大学104页的deepseek从入门到精通的手册的链接
以下是为您找到的与清华大学 DeepSeek 相关的一些资料链接: https://pan.quark.cn/s/56e2713e95f4 https://docs.qq.com/doc/DSG9SWFpjVXI3aHZ1 清华大学 104 页的 DeepSeek 从入门到精通的手册:https://waytoagi.feishu.cn/record/FjWorH (2 月 11 日更新附录)
2025-04-11
给我提供一份清华大学104页的deepseek从入门到精通的手册
以下是为您整合的相关信息: 清华大学出品了《DeepSeek:从入门到精通》的指南,该指南详细阐述了 DeepSeek 的功能,如智能对话、文本生成、代码生成、自然语言理解等,并探讨了其使用方法,包括推理模型与通用模型的区别、提示语设计策略等,旨在帮助用户更好地掌握这一 AI 工具的使用,提升工作效率和创新能力。您可以通过以下链接获取:https://waytoagi.feishu.cn/record/QAURr4CNGeJ5GIcvU0nc9X3dndg 。 此外,还有一些相关的更新和资料,如 2 月 11 日更新附录的清华大学 104 页 Deepseek 从入门到精通、1 月 21 日更新热门 AI deepseek 推荐及案例征稿通知、1 月 14 日更新爱好者交流 g 群和微信群、12 月 30 日更新案例 24,25,26 等。 同时还有关于 AI 赋能教学的课程实施流程及案例亮点等内容,如利用 AI 生成开放性问题引发深度思考、通过多维数据分析支持全面客观的判断、通过辩论提升批判性思维和表达能力等。
2025-04-11
入门:Ai绘画
以下是为您提供的 AI 绘画入门相关的资源和教程: 在“通往 AGI 之路介绍.pdf”中,有关于 AI 绘画入门的部分,包括产品工具与案例实战,开箱即用。 以下是一些 B 站的视频教程链接: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 还有 SD 新手从 0 入门的 AI 绘画教程,包括以下章节: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet! 您可以通过以上资源进行学习,祝您在 AI 绘画领域学有所成!
2025-04-10
AI入门
以下是为您提供的 AI 入门的相关指导: 一、Python + AI 入门 在深入学习 AI 时,编程可能会让您感到困难,尤其是对于不会代码的朋友。但别担心,这里有一份 20 分钟的简明入门指南,能帮助您更快掌握 Python 和 AI 的相互调用,并在接下来的 20 分钟内完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。 关于 Python: Python 就像哆啦 A 梦,拥有装满各种道具的标准库,遇到问题时可直接使用。若标准库道具不够,还能通过 pip 一类的工具从 GitHub 一类的分享代码平台订购新道具。Python 在 AI 领域被广泛使用,遍地是大哥。 关于 OpenAI API: OpenAI 通过两种方式提供服务,一是通过 ChatGPT 提供开箱即用的服务,直接对话即可;二是通过 OpenAI API 提供更加灵活的服务,通过代码调用完成更多自动化任务。 二、JavaScript 的 AI 堆栈入门 尽管当前版本是一个很好的起点,但仍在逐步完善,路线图包括: 1. 交互式 CLI 用于 createaistack,开发人员可选择自己的项目脚手架和依赖项。 2. 用于高级用例的事务性数据库(例如,在问答中保留问题、用户偏好等)。 3. 更多的向量数据库和部署平台选项。 4. 用于开源模型的轻量级微调步骤。 同时,对在创建过程中发挥重要作用的开源项目表示感谢,如 Tailwind、ai sdk、dotenv、Next.js、langchain.js 等。 三、新手学习 AI 的方法 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可根据兴趣选择特定模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。知识库中有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-04-10