对于小白了解 AI ,以下是一些关键的知识点:
注:编码器和解码器都不只一个而是N个,且都有多头注意力层(且解码器与编码器的多头注意力层不一样——带掩码的多头自注意力)。(这个图有点复杂,仅个人存档用)解码器还包含线性层和Softmax层,它们俩加一块的作用是把解码器的输出转化为词汇表的概率分布(代表下一个被生成token的概率)。后续出现的变种:1)仅编码器——如BRET模型,用于理解语言,比如掩码语言建模、情感分析等;2)仅解码器——如文本生成3)编码器-解码器——如T5、BART模型,比如翻译、总结等4、其他概念科普1)SFT模型——监督微调(Supervised Fine-tuning)2)奖励模型——基于3H原则打分。3)小样本提示——提示词给出样例样本4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。
注:编码器和解码器都不只一个而是N个,且都有多头注意力层(且解码器与编码器的多头注意力层不一样——带掩码的多头自注意力)。(这个图有点复杂,仅个人存档用)解码器还包含线性层和Softmax层,它们俩加一块的作用是把解码器的输出转化为词汇表的概率分布(代表下一个被生成token的概率)。后续出现的变种:1)仅编码器——如BRET模型,用于理解语言,比如掩码语言建模、情感分析等;2)仅解码器——如文本生成3)编码器-解码器——如T5、BART模型,比如翻译、总结等4、其他概念科普1)SFT模型——监督微调(Supervised Fine-tuning)2)奖励模型——基于3H原则打分。3)小样本提示——提示词给出样例样本4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。
注:编码器和解码器都不只一个而是N个,且都有多头注意力层(且解码器与编码器的多头注意力层不一样——带掩码的多头自注意力)。(这个图有点复杂,仅个人存档用)解码器还包含线性层和Softmax层,它们俩加一块的作用是把解码器的输出转化为词汇表的概率分布(代表下一个被生成token的概率)。后续出现的变种:1)仅编码器——如BRET模型,用于理解语言,比如掩码语言建模、情感分析等;2)仅解码器——如文本生成3)编码器-解码器——如T5、BART模型,比如翻译、总结等4、其他概念科普1)SFT模型——监督微调(Supervised Fine-tuning)2)奖励模型——基于3H原则打分。3)小样本提示——提示词给出样例样本4)思维链——谷歌在2022年一篇论文提到思维链可以显著提升大语言模型在复杂推理的能力(即有推理步骤),即使不用小样本提示,也可以在问题后面加一句【请你分步骤思考】5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。