Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

科普性质的介绍下目前大模型的优秀应用案例和实施经验

Answer

以下为目前大模型的一些优秀应用案例和实施经验:

在问答行业

  • Baichuan 借鉴了 Meta 的 CoVe 技术,将复杂 Prompt 拆分为多个独立且可并行检索的搜索友好型查询,使大模型能够对每个子查询进行定向知识库搜索。
  • 利用自研的 TSF(Think-Step Further)技术来推断和挖掘用户输入背后更深层的问题,以更精准、全面地理解用户意图。
  • 自研 Baichuan-Text-Embedding 向量模型,对超过 1.5T tokens 的高质量中文数据进行预训练,并通过自研损失函数解决了对比学习方式依赖 batchsize 的问题。同时引入稀疏检索和 rerank 模型,形成向量检索与稀疏检索并行的混合检索方式,大幅提升了目标文档的召回率,达到 95%。

在医疗行业

  • 涵盖疾病的诊断与预测、药物研发以及个性化医疗等方向。
  • 例如,麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin。研究者先构建由两千个性能已知的分子组成的训练集,用它们训练 AI 学习分子特点,总结规律,再对美国 FDA 已通过的六万多个分子进行分析,最终成功识别出有效分子,且实验证明效果良好。

在模型架构方面

  • 包括 encoder-only、encoder-decoder 和 decoder-only 等类型。
  • 如 BERT 是 encoder-only 模型的代表,google 的 T5 是 encoder-decoder 模型的代表,众多熟知的 AI 助手包括 ChatGPT 基本属于 decoder-only 架构。
  • 大模型的特点在于预训练数据量大,往往来自互联网上的多种来源,且参数众多,如 Open 在 2020 年发布的 GPT-3 就已达到 170B 的参数。
Content generated by AI large model, please carefully verify (powered by aily)

References

大模型RAG问答行业最佳案例及微调、推理双阶段实现模式:基于模块化(Modular)RAG自定义RAG Flow

基于百川的宣传资料整理([查看原文](https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650901201&idx=1&sn=3a9bd61403fb4b024ec5d8c128990495&scene=21#wechat_redirect)),由于资料有限,对于部分细节笔者进行了适当猜测和补充。针对用户日益复杂的问题,Baichuan借鉴了Meta的CoVe技术,将复杂Prompt拆分为多个独立且可并行检索的搜索友好型查询,使大模型能够对每个子查询进行定向知识库搜索。此外,他们还利用自研的TSF(Think-Step Further)技术来推断和挖掘用户输入背后更深层的问题,以更精准、全面地理解用户意图。TSF的技术细节并没有披露,猜测其本质应该是对Step-back prompting方法的改良。在检索步骤中,百川智能自研了Baichuan-Text-Embedding向量模型,对超过1.5T tokens的高质量中文数据进行预训练,并通过自研损失函数解决了对比学习方式依赖batchsize的问题。该向量模型登顶了C-MTEB。同时引入稀疏检索和rerank模型(未披露),形成向量检索与稀疏检索并行的混合检索方式,大幅提升了目标文档的召回率,达到了95%。

开发:AI应用大模型商业化落地现状与思考

首先来看医疗行业,这是关乎每个人生命健康的重要领域。大模型在医疗行业的应用主要涵盖三个方向:疾病的诊断与预测、药物研发以及个性化医疗。从医疗前期的图像诊断,基因组学和精准医疗到药物研发阶段再到最后病人的个性化医疗,人工智能都有其适合的应用场景。例如,在2020年,麻省理工学院利用AI发现了一种名为Halicin的新型广谱抗生素,它不仅能有效杀灭对现有抗生素产生耐药性的细菌,而且不会使细菌产生新的耐药性。这一突破性发现源于AI的助力。研究者先搞了一个由两千个性能已知的分子组成的训练集,这些分子都被标记好了是不是可以抑制细菌生长,用它们去训练AI。AI自己学习这些分子都有什么特点,总结了一套“什么样的分子能抗菌”的规律。之后又对美国FDA已通过的六万多个分子中进行分析,最终成功识别出了一个符合所有要求的分子,这就是Halicin。之后研究者开始做实验证明,它真的非常好使,大概很快就会用于临床,造福人类。这个例子充分展示了AI大模型在医疗领域的巨大潜力,目前很多医疗研究机构都进行医疗大模型的开发研究,大模型在医疗领域大有可为!

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数

Others are asking
有关 ai agent 的科普文章
以下是为您提供的关于 AI Agent 的科普内容: AI Agent 是一个融合了多学科精髓的综合实体,包括语言学、心理学、神经学、逻辑学、社会科学和计算机科学等。它不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。 目前,关于 AI Agent 存在一些情况。例如,网络上对其的介绍往往晦涩难懂,让人感觉神秘莫测,其自主性、学习能力、推理能力等核心概念,以及如何规划和执行任务、理解并处理信息等方面,都像是笼罩在一层神秘面纱之下。 另外,以国与国之间的外交为例来解释相关协议。假设每个 AI 智能体(Agent)就是一个小国家,它们各自有自己的语言和规矩。各国大使馆试图互相沟通、做生意、交换情报,但现实中存在诸多问题,如协议各异、要求不同等。 如果您想了解更多关于 AI Agent 的详细内容,可访问: 。
2025-04-15
AI通识科普文章
以下是为您提供的 AI 通识科普相关内容: 对于对 AI 都没太多概念的纯纯小白: 现有常见 AI 工具小白扫盲:(1 小时 32 分开始)。 AI 常见名词、缩写解释: 。 新手学习 AI 的步骤: 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 入门经典必读:作者为 。文中提到人工智能的研究正在以指数级别的速度增长,对于初学者来说跟上新发布的内容很难,因此分享了一份用于更深入了解现代 AI 的精选资源列表,称为“AI 典藏”,包括对 Transformer 和 Latent Diffusion 模型的介绍、技术学习资源、构建大型语言模型的实用指南、AI 市场的分析以及里程碑式研究成果的参考列表等。
2025-04-14
有什么好的 AI 科普文章
以下为一些不错的 AI 科普文章: 通识篇: 现有常见 AI 工具小白扫盲: AI 常见名词、缩写解释: AIGC Weekly19: 开源图像模型 Stable Diffusion 入门手册 腾讯:介绍了 Stable Diffusion 的使用入门指南,包括硬件需求、安装 Python 和 Git、装配模型以及图像生成等内容。 AIGC 之我见 马丁的面包屑:产品经理、独立开发者马丁整理的自己关于 AIGC 的一些碎片化思考。 多邻国创始人 Luis von Ahn 专访:介绍了 Luis von Ahn 创建多邻国的过程和对 AI 的一些思考,特别是 AI 对教育的影响。 自监督学习 CookBook Mate:Meta AI 发布的为 AI 研究人员和从业者提供使用 SSL 方法的实用指南。 大语言模型发展历程:回顾了大语言模型的发展历程,介绍了历代先驱者的研究成果。 入门经典必读: 软件 2.0:Andrej Karpathy 是最早清楚解释为什么新的 AI 浪潮真正重要的人之一。 GPT 的现状:Andrej Karpathy 对 ChatGPT/GPT 模型一般如何工作、如何使用以及研发可能采取的方向的解释。 ChatGPT 是在做什么,为什么它有效?:计算机科学家和企业家 Stephen Wolfram 从一开始的原理解释了现代 AI 模型的工作原理。 解析 Transformer 模型:理解 GPT3、BERT 和 T5 背后的模型:对“什么是 LLM,它是如何工作的?”这个问题的更短、更直接的回答。
2025-03-21
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
稍微技术点的科普书,机器学习一类的
以下为您推荐两本关于机器学习的科普书: 1. 《入门|机器学习研究者必知的八个神经网络架构》 神经网络是机器学习文献中的一类模型,受到生物神经网络的启发,目前深度神经网络效果很好,可应用于任何从输入到输出空间复杂映射的机器学习问题。 学习神经计算的三个理由:了解大脑工作原理、了解受神经元及其适应性连接启发的并行计算风格、使用受大脑启发的新颖学习算法解决实际问题。 一般来说,神经网络架构可分为三类:前馈神经网络(是实际应用中最常见的类型,若有多个隐藏层则称为“深度”神经网络)、循环网络(连接图中定向了循环,动态复杂,更具生物真实性)。 2. 《这是一份「不正经」的深度学习简述》 深度学习是使用不同类型神经网络的表征学习,通过优化网络的超参数来获得对数据的更好表征。 列举了几个经典案例,如反向传播(相关参考阅读:、A theoretical framework for BackPropagation——Yann Lecun:http://yann.lecun.com/exdb/publis/pdf/lecun88.pdf)、更好的初始化网络参数(初始化策略需根据所使用的激活函数选择)。
2025-02-25
怎么制作科普视频
制作科普视频可以参考以下步骤和方法: 一、想出点子 1. 最佳免费选项: 2. 付费选项:4.0,但由于与互联网连接,必应可能更好 3. 尽管(或者事实上,由于)它所有的限制和怪异,人工智能是产生想法的完美选择。您通常需要有很多想法才能有好的想法,而人工智能擅长数量。有了正确的提示,您也可以强迫它非常有创意。在创意模式下让 Bing 查找您最喜欢的、不寻常的想法生成技术,如 Brian Eno 的倾斜策略或 Mashall McLuhan 的四种策略,并应用它们。或者要求一些奇怪的东西,比如受随机专利启发的想法,或者您最喜欢的超级英雄。 二、制作视频 1. 最佳动画工具:用于在视频中为人脸制作动画的 2. 最佳语音克隆: 3. 现在,生成一个完全由人工智能生成的角色的视频,阅读完全由人工智能编写的脚本,用人工智能制作的声音说话,由人工智能制作动画,这简直是微不足道的。但要注意深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。 4. 最近还发布了第一个商用文本到视频工具 Runway v2。它创建了 4 秒的短剪辑,更像是对未来发展的展示,但如果您想了解这个领域的未来发展,值得一看。 三、创作科普内容 1. 该场景对应的关键词库(13 个):目标用户、科普内容、生活问题、医疗类型、科普文章、病情症状、通俗性、专业名词、背景资质、权威领域、执业范围、证言人、内容形式。 2. 提问模板(3 个): 第一步,分析不同目标用户对于科普内容的需求(具体解决生活中的什么问题) 第二步,针对某一类人群所偏好的科普内容主题,进行内容撰写。 第三步,根据平台和内容形式进行改写。 四、用 AI 把小说做成视频 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-18
请找到 AI 用于知识管理的案例
以下是一些 AI 用于知识管理的案例: 1. 在法学领域,当模型培训针对组织内特定的基于文本的知识体系进行微调时,生成式人工智能可以有效地管理组织的知识。例如摩根士丹利正在与 OpenAI 的 GPT3 合作,微调财富管理内容的培训,以便财务顾问既可以搜索公司内部的现有知识,又可以轻松地为客户创建量身定制的内容。 2. 在构建高效的知识管理体系方面,可以通过一系列创新的 AI 应用来实现。比如,AI 可以通过分析工作模式和内容类型,自动生成提示词,帮助将信息和知识分类到 PARA(项目、领域、资源、档案)的相应部分,还能帮设计笔记标签系统。此外,知识助手 Bot 可以根据学习进度和兴趣点,定期推送相关的文章、论文和资源,实现渐进式积累领域知识。 3. 在代码库相关的知识管理中,Cursor 有针对大代码库精准找到相关函数,并利用其信息帮助撰写代码的功能。对于非开发性质的问答,它是一个天然的 RAG 引擎。在问答窗口使用特定操作时,它会先在当前文件夹下搜索并显示相关文档和相关度,最后用这些信息构建提示词完成生成。而且,它能与私有文档自然结合进行问答,并将新生成的见解沉淀成新文档,形成知识闭环,提高知识检索和管理的效率。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13
有AI在各个行业的案例吗
以下是 AI 在各个行业的一些应用案例: 汽车行业: 1. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,如特斯拉、Waymo 和 Cruise 等公司在开发和测试自动驾驶汽车。 2. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 3. 个性化用户体验:根据驾驶员偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统。 4. 预测性维护:分析车辆实时数据预测潜在故障和维护需求,减少停机时间和维修成本。 5. 生产自动化:在汽车制造中用于自动化生产线,提高生产效率和质量控制。 6. 销售和市场分析:汽车公司用 AI 分析市场趋势、消费者行为和销售数据,制定营销策略和优化产品定价。 7. 电动化和能源管理:在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。 8. 共享出行服务:如 Uber 和 Lyft 等,使用 AI 优化路线规划、调度车辆和定价策略,提高服务效率和用户满意度。 9. 语音助手和车载娱乐:AI 驱动的语音助手允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 10. 车辆远程监控和诊断:AI 系统远程监控车辆状态,提供实时诊断和支持。 其他行业: 1. 企业运营:包括日常办公文档材料撰写整理、营销对话机器人、市场分析和销售策略咨询等。 2. 教育:协助评估学生学习情况,为职业规划提供建议,定制化学习内容,论文初稿搭建及审核,帮助低收入国家/家庭获得平等教育资源。 3. 游戏/媒体:定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 4. 零售/电商:舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,客户购物趋势分析及洞察。 5. 金融/保险:个人金融理财顾问,贷款信息摘要及初始批复,识别并检测欺诈活动风险,客服中心分析及内容洞察。
2025-04-12
用AIGC生成的单镜头循环视频案例
以下是一些用 AIGC 生成的单镜头循环视频的案例: OpenAI 的 Sora 视频生成模型:能够生成长达 1 分钟的视频,在时长、稳定性、一致性和运动幅度上表现出色。它可以根据提供的图像和提示生成视频,还能在时间上向前或向后扩展视频以产生无缝的无限循环。此外,能零镜头地改变输入视频的风格和环境,在两个输入视频之间逐渐进行插值创建无缝过渡,也能够生成图像。 Luma 视频生成工具 Dream machine 增加了尾帧生成视频的功能和循环视频生成功能。 智谱 AI 发布的 DiT 视频生成模型“智谱清影”,支持文生和图生视频,目前免费使用,加速生成需要付费。 此外,还有一些其他相关项目: Google 的 Genie 采用 STtransformer 架构,包括潜在动作模型、视频分词器与动力学模型,拥有 110 亿参数。 DeepMind 的 WaveNet 是一种生成模型,可以生成非常逼真的人类语音。 OpenAI 的 MuseNet 是一种生成音乐的 AI 模型,可以在多种风格和乐器之间进行组合。 ElevenLabs 的 Multilingual v2 是一种语音生成模型,支持 28 种语言的语音合成服务。 Stability 发布了 Stable Video 4D 模型,可以从视频中生成更多角度的新视频。 Pixverse 更新了 V2 版本 DiT 视频模型,支持 8 秒时长视频生成、细节和动作增强、支持最多 5 段内容一次性生成,无缝衔接。
2025-04-10
推荐知识库中用ai做学术的案例
以下是知识库中与用 AI 做学术相关的案例和信息: B 站 up 主的课程:每节 15 分钟,免费且内容好,涵盖 AI 艺术字等。 炼丹操作:16 号晚上中老师会带大家动手炼丹,炼丹需提前准备一些图,会让老师提前发布内容让大家准备。 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 经典必读文章:如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。 6 月 29 日更新:翻译完 a16z 推荐的 AI 典藏文章其中两篇:。
2025-04-01
有AI+游戏的最新案例吗
以下是一些 AI+游戏的最新案例: 由 5 人独立游戏工作室 Proxima 开发的 AI 冒险独立游戏 Suck Up!上线三周油管播放超千万。这是一款沙盒社交冒险游戏,团队尝试加入了名为 Nemo 的 AI NPC,基于 LLM 驱动,Nemo 能在接收到用户命令或其他线索后,调动感知、记忆,并转化为可执行的游戏行动。去年上半年,该工作室因获得 160 万美元投资引起轰动,上线后也受到资本关注。玩家对其玩法和模式提出了很多创意想法,如设计成就系统、上线多人模式等。 开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。像 MusicLM 等模型已经支持生成多音轨的作品。 2023 年 Genfun.ai 和 Meshy 联合制作的游戏《Soul Chronicle》,是首款实时 3D+AIGC+UGC 的 MMO 手游,最大突破是制作出了与游戏完美融合的 3D AIGC 技术,可在游戏中实时生成角色皮肤。 2024 年 Bitmagic 释出的《Roleverse》平台,可在平台内使用提示在游戏内定制角色,对角色进行缩放、挤压和拉伸,也能轻松对游戏世界进行编辑。 AI 技术在游戏行业的应用由来已久,且不断发展。从最初的简单内容和随机元素生成,到辅助游戏设计,再到如今能够生成更复杂的游戏内容,如动态场景、智能 NPC 行为等。AI 对游戏创作的影响包括美术与风格、剧情与叙事、关卡与玩法、音效与音乐、测试与优化等方面。同时,AI 能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,游戏还能成为 AI 模型能力的最佳试验场。
2025-04-01
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
公司给我了一个调研作业,收集 市场上其它公司在agent业务变革上的优秀实践
很抱歉,目前没有关于市场上其他公司在 agent 业务变革方面优秀实践的相关内容。建议您通过以下途径进行收集和调研: 1. 行业报告和研究机构发布的分析:这些通常会涵盖多个公司在特定领域的实践和趋势。 2. 专业的行业论坛和社区:与同行交流,获取他们的经验和见解。 3. 公司的官方网站和公开资料:了解其业务变革的介绍和相关案例分享。 4. 新闻媒体报道:关注相关的商业新闻,获取最新的动态和实践案例。
2025-03-31
如何构建一个优秀的ai的知识库
构建一个优秀的 AI 知识库可以参考以下步骤和要点: 1. 明确概念和原理:了解 AI 时代知识库的概念、实现原理以及能力边界。 2. 掌握获取资料的原理:比如在通往 AGI 之路大群中通过对话获取知识库中资料的原理。 3. 利用相关平台组件:更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更强大的智能体。 4. 规划内容: 数据库:让 Coze 拥有记忆的组件 1。 知识库:让 Coze 拥有记忆的组件 2。 变量:让 Coze 拥有记忆的组件 3。 JSON:让您更好地使用 Coze 插件。 API:外部应用程序接入 Coze 的方式。 操作系统与服务器:那些接入了 Coze 的微机器人的运行位置。 Docker:以最简单的方式部署微信机器人。 5. 确定功能范围:编写 prompt 提示词,设定 Bot 的身份和目标。 6. 整理对应关系:创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 支持的文档类型:本地文档、在线数据、飞书文档、Notion 等,可使用本地文档。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行操作。 同时,“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,您既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。
2025-03-12
国内优秀Agent应用案例
以下是一些国内优秀的 Agent 应用案例: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 3. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 4. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色,提供更深入的环境感知和记忆功能。
2025-01-19
国内优秀智能体案例
以下是一些国内优秀智能体案例: 在车辆使用指南维度,多个大模型表现优异,达到 80 分以上,在操作指南、车辆故障诊断、维修保养等任务上具备较高交互成熟度。 在汽车场景中,部分 13 14B 中小模型超过云端闭源模型,展现出端侧模型满足用户需求的良好能力和巨大潜力。 在社交方向,有用户注册后先创建自己的智能体,让其与他人的智能体聊天,然后真人介入的有趣场景。 字节推出的“扣子”是用于开发下一代 AI 聊天机器人的构建平台。 国内存在如 Dify.AI 等智能体开发平台。
2025-01-19
有哪些优秀的AI copilot?
以下是一些优秀的 AI copilot: 1. 对于编程辅助方面: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 在 Agent 构建平台方面: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作等,并能部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并能访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 3. 此外,还有一些新的 AI 产品和网站,如: SciSpace Copilot:由印度论文服务平台 SciSpace 开发,用于解释科学文献中的文本、数字和表格,输出内容更精确。链接:https://typeset.io/ AIPRM for ChatGPT:SEO Prompt 模板插件,支持 ChatGPT 和 Midjourney 等。链接:https://www.aiprm.com/ Teamsmart:有趣的文档助手,根据不同职业/技能提供不同能力点的机器人。链接:https://www.teamsmart.ai/ Boring Report:应对标题党的神器,去除文章夸张表述,保留客观事实。
2025-01-18
优秀的来源大模型有哪些
以下是一些优秀的大模型: Google 的 T5:属于 encoderdecoder 类型的模型,适用于翻译和摘要等任务。 OpenAI 的 GPT3:预训练数据量大,参数众多,能根据用户输入的任务描述或示例完成任务。 ChatGPT:用户通过像和人类对话的方式即可完成任务。 国内的优秀大模型有: 智谱清言(清华&智谱 AI):基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三,更擅长专业能力,但代码能力有优化空间,知识百科稍显不足。可应用于 AI 智能体、较复杂推理、广告文案、文学写作等场景。 通义千问 2.0(阿里云):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡。聚焦在移动设备端的应用,涵盖知识、记忆、工具、创作等方向,支持多种工具和文生文、文生图等场景。 Baichuan213BChat(百川智能):百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-28