「AGIへの道」飛書ナレッジベースへ直行 →

怎么才能让FLUX生成的人物更像真人的照片

回答

以下是一些可能有助于让 FLUX 生成的人物更像真人照片的建议:

  1. 尝试使用特定的提示词,例如“abstract network out of glass made of holographic liquid crystal, dark background, blue light reflections, symmetrical composition, centered in the frame, highly detailed, hyper-realistic, cinematic lighting, in the style of Octane Rende --ar 16:9 --style raw --personalize --v 6.1”。
  2. 可以训练 FLUX Lora 模型,如褪色胶片风格,推荐权重 0.6 - 0.8,人像会偏向复古褪色的胶片风格。
  3. 对于生成人物,还可以参考 XLabs-AI 发布的不同 Lora,如 mjv6_lora(Midjourney 风格)、realism_lora(写实风格)等,并使用相应的示例进行参考和调整。
  4. 您还可以从以下地址下载相关的 Lora:https://hf-mirror.com/Kijai/flux-loras-comfyui/tree/main/xlabs
AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

AIGC Weekly #88

封面提示词:abstract network out of glass made of holographic liquid crystal,dark background,blue light reflections,symmetrical composition,centered in the frame,highly detailed,hyper-realistic,cinematic lighting,in the style of Octane Rende --ar 16:9 --style raw --personalize --v 6.1[?查看更多风格和提示词](https://catjourney.life/)这周同样训练了一个FLUX Lora模型,褪色胶片风格,推荐权重0.6-0.8。非常适合生成毛茸茸的动物玩偶人像会偏向复古褪色的胶片风格涉及到玻璃制品产品展示摄影的表现很好整体景深模糊的也很好,过度自然柔和下载:https://www.liblib.art/modelinfo/4510bb8cd80142168dc42103d7c20f82?from=personal_page

Midjourney 人物一致性已上线

官方说明和操作:DavidH:Hey @everyone @here we're testing a new"Character Reference"feature today This is similar to the"Style Reference"feature,except instead of matching a reference style it tries to make the character match a"Character Reference"image.How it worksType --cref URL after your prompt with a URL to an image of a characterYou can use --cw to modify reference 'strength' from 100 to 0strength 100(--cw 100)is default and uses the face,hair,and clothesAt strength 0(--cw 0)it'll just focus on face(good for changing outfits / hair etc)What it's meant forThis feature works best when using characters made from Midjourney images.It's not designed for real people / photos(and will likely distort them as regular image prompts do)Cref works similarly to regular image prompts except it 'focuses' on the character traitsThe precision of this technique is limited,it won't copy exact dimples / freckles / or tshirt logos.Cref works for both Niji and normal MJ models and also can be combined with --sref Advanced FeaturesYou can use more than one URL to blend the information /characters from multiple images like this --cref URL1 URL2(this is similar to multiple image or style prompts)How does it work on the web alpha?Drag or paste an image into the imagine bar,it now has three icons.selecting these sets whether it is an image prompt,a style reference,or a character reference.Shift+select an option to use an image for multiple categories Remember,while MJ V6 is in alpha this and other features may change suddenly,but V6 official beta is coming soon.We'd love everyone's thoughts in ⁠ideas-and-features We hope you enjoy this early release and hope it helps you play with building stories and worlds

第十五期 生图新王FLUX.1

XLabs-AI发布了6个不同Lora:mjv6_lora - Midjourney风格示例:A full-profile portrait of a Chinese dancer poised on a moonlit stone bridge,surrounded by the delicate blooms of a cherry orchard.Her silk garments ripple with her movement,her eyes are focused and intense,with skin details on her face.She's part of a scene inspired by classical poetry,her fluid motions a dance of elegance.The luminance is delicate and dreamlike,bestowing a soft ambiencerealism_lora -写实风格示例:In a conference room setting,a beauty women dressed in business attire are attending a meeting,random expressions,postures,and physical characteristicsa RAW ultra-realistic photo,UHD,8kanime_lora -动漫风格示例1girldisney_lora -迪斯尼风格示例:1cat,catoon,disney,scenery_lora -风景风格示例:A breathtaking view of the Himalayas mountain range,showcasing its majestic and serene beauty.The mountains are covered in snow,with their peaks reaching towards the sky,creating a stunning contrast with the blue horizon.The range is vast and imposing,with numerous towering peaks,including Mount Everest,the highest point on Earth.The scene captures the grandeur and tranquility of the Himalayas,with sunlight casting a soft glow on the snow-covered slopes.The foreground shows the rugged terrain and lush greenery of the lower elevations,adding to the diverse and spectacular landscape.art_lora -艺术风格Cat,European street,exploration,cozy,mysterious,colorful buildings,sunlight through leaves,cobblestone path,high definition,watercolor painting,warm tones,bright lighting effects,paper textureLora下载地址:https://hf-mirror.com/Kijai/flux-loras-comfyui/tree/main/xlabs

他の質問
开源flux模型如何快速使用
以下是关于开源 Flux 模型快速使用的方法: 1. 模型的下载: 如果因为环境问题,可以在网盘中下载。 siglipso400mpatch14384(视觉模型):siglip 由 Google 开发的视觉特征提取模型,负责理解和编码图像内容。工作流程包括接收输入图像、分析图像的视觉内容并将这些视觉信息编码成一组特征向量。打开 ComfyUI\models\clip,在地址栏输入 CMD 回车,打开命令行,输入下面的命令拉取模型(也可以在网盘里下载)。 image_adapter.pt(适配器):连接视觉模型和语言模型,优化数据转换。工作流程包括接收来自视觉模型的特征向量、转换和调整这些特征,使其适合语言模型处理。通过 https://huggingface.co/spaces/fancyfeast/joycaptionprealpha/tree/main/wpkklhc6 下载,放到 models 的 Joy_caption 文件夹里,如果该文件夹不存在,就新建一个。 MetaLlama3.18Bbnb4bit(语言模型):大型语言模型,负责生成文本描述。工作流程包括接收经过适配器处理的特征、基于这些特征生成相应的文本描述、应用语言知识来确保描述的连贯性和准确性。打开 ComfyUI\models\LLM,地址栏输入 CMD 回车,在命令行里面输入下面命令。 2. 下载地址: ae.safetensors 和 flux1dev.safetensors 下载地址:https://huggingface.co/blackforestlabs/FLUX.1dev/tree/main 。 准备了夸克和百度的网盘链接,方便部分同学下载: flux 相关模型(体积较大)的夸克网盘链接:https://pan.quark.cn/s/b5e01255608b 。 flux 相关模型(体积较大)的百度网盘链接:https://pan.baidu.com/s/1mCucHrsfRo5SttW03ei0g?pwd=ub9h 提取码:ub9h 。 如果 GPU 性能不足、显存不够,底模可以使用 fp8 的量化版模型,速度会快很多,下载地址:https://huggingface.co/Kijai/fluxfp8/tree/main 。 3. 工作流下载: 最后我们再下载 dev 的工作流: 。或者下面官方原版的图片链接,图片导入 comfyUI 就是工作流:https://comfyanonymous.github.io/ComfyUI_examples/flux/flux_dev_example.png 。我们打开 ComfyUI,把工作流或图片拖拽到 ComfyUI 里。
2025-04-08
我现在是学了一段时间的comfyui+flux,接下来准备学Python开发comfyui节点、对接模型,这样学下去方向有没有问题呢
您学习 ComfyUI 和 Flux 一段时间后准备学习 Python 开发 ComfyUI 节点并对接模型,这个方向是可行的。以下是一些相关的知识和要点供您参考: 工作流方面: 工作流节点可直接拖动单个节点到任意位置,也可按住 Control 键并用鼠标左键滑框选中多个节点,再按 Shift 键一起拖动。 选中节点后右键新建组,可修改组名、颜色等,组被覆盖时可直接拖动组。 选中节点后右键选择对齐方式,如顶部对齐、左边对齐等。 第三方节点的安装方式包括在 customer NODE manager 中安装、在 GitHub 上复制链接安装、通过终端输入指令安装、在秋叶启动器的版本管理中安装。 可通过 group by Parser 节点控制组,也可通过按住节点按 control b 跳过或按 control m 终止执行。 模型方面: 噪声强度由种子调节,种子固定噪声分布方式,噪声与 CLIP 无关,增大噪声设置值会增强模型对图片重绘的程度。 模型版本的提示词差异:1.5 以 tag 为主,XL 论文称以自然语言为主,但实际使用中因模型微调情况可能仍需用 tag。 Flux 模型有时生成黑图,可能有修复方案,需自行查询。图像生成结果为空,可能是 VAE 编码器与大模型未连接,调整连接后问题解决。 安装方面: 自动打标 joy_caption 副本的节点安装地址为 D:\\ComfyUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes。 安装步骤包括:(Comfyui evn python.exe)python m pip install rrequirements.txt 或点击 install_req.bat,注意 transformers 版本不能太低。 下载模型或者运行 ComfyUI 自动下载模型到合适文件夹,如从 https://huggingface.co/unsloth/MetaLlama3.18Bbnb4bit 下载并放到 Models/LLM/MetaLlama3.18Bbnb4bit 文件夹内。 新版的 PuLID 解决了模型污染的问题,使用新版的节点需要禁用或者删除之前的 PuLID 节点,不然可能会有冲突问题。模型放在 ComfyUI\\models\\pulid 文件夹里面,注意用新版的。 如果使用 PuLID,还需要安装 EVA CLIP 等模型。
2025-03-21
flux lora训练
以下是关于 Flux 的 Lora 模型训练的详细步骤: 模型准备: 1. 下载所需模型,包括 t5xxl_fp16.safetensors、clip_l.safetensors、ae.safetensors、flux1dev.safetensors。 注意:不使用时存放位置随意,只要知晓路径即可。训练时建议使用 flux1dev.safetensors 版本的模型和 t5xxl_fp16.safetensors 版本的编码器。 下载脚本: 1. 网盘链接: 夸克网盘链接:https://pan.quark.cn/s/ddf85bb2ac59 百度网盘链接:https://pan.baidu.com/s/1pBHPYpQxgTCcbsKYgBi_MQ?pwd=pfsq 提取码:pfsq 安装虚拟环境: 1. 下载完脚本并解压。 2. 在文件中找到 installcnqinglong.ps1 文件,右键选择“使用 PowerShell 运行”。 3. 新手在此点击“Y”,然后等待 1 2 小时的下载过程,完成后提示是否下载 hunyuan 模型,选择 n 不用下载。 数据集准备: 1. 进入厚德云 模型训练 数据集:https://portal.houdeyun.cn/sd/dataset 2. 创建数据集: 在数据集一栏中,点击右上角创建数据集。 输入数据集名称。 可以上传包含图片 + 标签 txt 的 zip 文件,也可以上传只有图片的文件(之后可在 c 站使用自动打标功能),或者一张一张单独上传照片。 Zip 文件里图片名称与标签文件应当匹配,例如:图片名“1.png”,对应的达标文件就叫“1.txt”。 上传 zip 以后等待一段时间,确认创建数据集,返回到上一个页面,等待一段时间后上传成功,可点击详情检查,预览数据集的图片以及对应的标签。 Lora 训练: 1. 点击 Flux,基础模型会默认是 FLUX 1.0D 版本。 2. 选择数据集,点击右侧箭头,选择上传过的数据集。 3. 触发词可有可无,取决于数据集是否有触发词。 4. 模型效果预览提示词则随机抽取一个数据集中的标签填入。 5. 训练参数可调节重复次数与训练轮数,厚德云会自动计算训练步数。若不知如何设置,可默认 20 重复次数和 10 轮训练轮数。 6. 按需求选择是否加速,点击开始训练,会显示所需要消耗的算力。 7. 等待训练,会显示预览时间和进度条。训练完成会显示每一轮的预览图。 8. 鼠标悬浮到想要的轮次模型,中间会有个生图,点击会自动跳转到使用此 lora 生图的界面。点击下方的下载按钮则会自动下载到本地。 数据集存放位置:.Flux_train_20.4\\train\\qinglong\\train 运行训练:约 1 2 小时即可训练完成。 验证和 lora 跑图:有 ComfyUI 基础的话,直接在原版工作流的模型后面,多加一个 LoraloaderModelOnly 的节点就可以,自行选择 Lora 和调节参数。
2025-03-15
flux ae.sft放在哪个文件夹
在 ComfyUI 中,flux ae.sft 应放在 ComfyUI/models/vae/ 文件夹下。 Flux 模型在 ComfyUI 中的使用,需要将相关模型放在对应的目录下。具体来说,t5xxl_fp16.safetensors 放在 ComfyUI/models/clip/ 目录下,clip_l.safetensors 放在 ComfyUI/models/clip/ 目录下,ae.safetensors 放在 ComfyUI/models/vae/ 目录下,flux1dev.safetensors 放在 ComfyUI/models/unet/ 目录下。flux1dev.safetensors 是底模,ae.safetensors 是 VAE,clip_l.safetensors 和 t5xxl_fp16.safetensors 是关于文字语言编码。
2025-03-07
ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUI-aki(1)\ComfyUI-aki-v1.6\ComfyUI\models\checkpoints\flux1-dev-fp8.safetensors
很抱歉,根据您提供的错误信息“ERROR: Could not detect model type of: D:\AIruanjian\AIRUANJIAN\ComfyUIaki\ComfyUIakiv1.6\ComfyUI\models\checkpoints\flux1devfp8.safetensors”,暂时无法明确具体的问题原因。可能是模型文件格式不被识别,或者文件路径存在错误等。建议您检查文件的完整性和正确性,确保其符合相关软件的要求。
2025-03-07
midjourney_whisper_flux_lora_v01
以下是关于您提到的“midjourney_whisper_flux_lora_v01”的相关信息: 1. XLabsAI 发布了 6 个不同的 Lora,包括 Midjourney 风格、写实风格、动漫风格、迪斯尼风格、风景风格等,并提供了相应示例。 2. 文生图模型排序(从高到低):Imagen 3 真实感满分,指令遵从强;Recraft 真实感强,风格泛化很好,指令遵从较好(会受风格影响);Midjourney 风格化强,艺术感在线,但会失真,指令遵从较差;快手可图 影视场景能用,风格化较差;Flux.1.1 真实感强,需要搭配 Lora 使用;文生图大模型 V2.1L(美感版) 影视感强,但会有点油腻,细节不够,容易糊脸;Luma 影视感强,但风格单一,糊;美图奇想 5.0 AI 油腻感重;腾讯混元 AI 油腻感重,影视感弱,空间结构不准;SD 3.5 Large 崩。 3. 指定 AI 生图里的文字,有 9 种解决方案,其中 2 种快过时了。包括 Midjourney(v6 版本开始支持文字效果,主要支持英文,中文支持有限)、Ideogram(以图片嵌入文字能力闻名,2.0 模型能力得到进一步加强,支持复杂文本和多种艺术风格,文字与图像能够自然融合,支持英文,中文提示词可自动翻译为英文)、Recraft(V3 开始支持文本渲染能力,是目前唯一能在图像中生成长文本的模型,支持精确的文本位置控制,支持图像编辑功能,支持矢量图生成,支持英文,中文渲染能力较弱)、Flux(FLUX.1 是一款高质量的开源图像生成模型,支持复杂指令,支持文本渲染,支持图像编辑,生成图像的质量很高,主要支持英文)。
2025-03-07
如何使用AI制作真人表情包?
以下是使用 AI 制作真人表情包的方法: 1. 使用 Gemini 2.0 Flash: 场景:表情包在社交媒体中是不可或缺的表达工具,但制作个性化表情包对许多人来说并不容易,有的工具可以生成根据某一个主体生成不同的表情,但是生成出来的图会多多少少改变原主体。 实用性:用户只需上传一张主体图片(例如一个小女孩的照片),通过简单的自然语言指令(如“让她开心大笑”),Gemini 就会自动生成相应的表情图片。 指令:“生成 XXX + XXX 的表情” 2. 使用 ChatGPT 4o: 输入提示词并加上最初的真人图片,例如:创建图片:一个戴着深蓝色蝴蝶结领结的柴犬,表情参考我上传的图片,3D 风格,毛绒绒质感,不要太逼真,比例为 1:1。如果对生成的第一个表情不满意,可以重新输入指令进行调整,如“让它看起来得意一点”。 一次生成九宫格表情包的方法:先收集很多自己喜欢的表情包,将每组拼图为 9 个,然后将先前做好的真人原图和一张九宫格拼图一起上传到 4o 对话框,输入相应指令,如:创建图片:参考图二的动作和道具制作表情包九宫格,每个图案都替换为图一为主角,保持风格为图一的质感,整整齐齐无留白排列,颜色明亮不偏黄,文字内容仔细核对不要出错。 另外,有的地方需要上传封面图,也可以由 4o 生成,先要求它做一个比例约 3:2 的。如果有个很喜欢的表情,使用九宫格出的效果不好,也可以单个一个个去生成,但比较费时间,且可能会受出图限制等待更久。最后将所有图片下载下来,挑选出需要的表情图片。
2025-04-11
真人头像改为漫画风格
要将真人头像改为漫画风格,可以参考以下方法: 1. 使用 SDXL Prompt Styler 插件: 转绘成折纸风时,最好不要加入线稿边缘(canny)的 controlnet 控制,或把 canny 的控制强度(strength)调到较小,因为手绘线条和折纸风格互斥。 若转成漫画风格并想较好保留人物外轮廓,加入 canny 控制能更好还原人物原本造型。 有时插件内置预设的提示词组合不一定能达到想要的效果,可在 prompt 中添加更多相关风格的关键词,如印象派风格可添加 impressionism、monet、oil painting 等。 该工作流结合 Vid2Vid Style Transfer with IPA&Hotshot XL 工作流,可较好实现视频不同风格的稳定转绘。 2. 选择复杂提示词: 如 Disney boy,Low saturation Pixar Super details,clay,anime waifu,looking at viewer,nighly detailedreflections transparent iridescent colors.lonctransparent iridescent RGB hair,art by Serafleurfrom artstation,white background,divine cinematic edgelighting,soft focus.bokeh,chiaroscuro 8K,bestquality.ultradetailultradetail.3d,c4d.blender,OCrenderer.cinematic lighting,ultra HD3D renderinoiw 1.5s 500v 5 。 若觉得提示词简单,可选择更复杂的。 可根据需求调整提示词,如照片风格不好可更换照片重新生成;若觉得 Disney 风格太过卡通,可把提示词中的 Disney 换成 Pixar;若为女孩,可把 boy 换成 girl。每次会生成 4 张图片,对某一张满意可点击下方的 U1~U4 生成大图,对风格满意但需调整可点击下方的 V1~V4 进行修改。 3. 使用 Coze“图像流”进行智能换脸: 该节点需要 2 个图,一个是脸图,一个是底稿图。第一个 reference 指的是参考的脸,即会换上去的脸;第二个 template 指的是背景图,即脸会被换掉的图;skin 指的是美肤。 美肤拉到 1 可能导致脸部磨皮涂抹痕迹严重。 在没有很明显的人脸或纯动漫风格时可能会报错,在文生图的提示词里加上写实风格能提高成功率。也可自己放进两张真实的图来替换脸,添加方式在开始框加上一个输入参数,类型为 image 即可。
2025-03-28
数字人可以替代真人直播吗
数字人在一定程度上可以用于直播,但不能完全替代真人直播。 数字人的优势包括: 1. 能够 24 小时不间断直播,提升表达效率和营销效率。 2. 可以创造真实世界无法完成的对话或交流。 然而,数字人直播也面临一些问题: 1. 平台限制:目前数字人水平参差不齐,平台担心直播观感,有一定打压限制。例如抖音出台一些标准,微信视频号容忍度更低,可能人工检查封号。 2. 技术限制:形象只是皮囊,智能水平和未来想象空间依赖大模型技术提升。 3. 需求限制:直播带货是一个落地场景,但不够刚性。“懂得都懂”的刚需场景,国内难以实现。目前更多是带来体验新鲜感。 4. 伦理/法律限制:存在声音、影像版权等问题,比如换脸、数字永生等。 在电商直播间中,虚拟主播面临的挑战有: 1. 货品展示方面,直播间的特点在于真实性,包括真实的商品展示、试用以及真实的评测,然而这是虚拟主播的致命挑战。比如虚拟网红翎 Ling 的美妆带货翻车案例,没有皮肤问题困扰的虚拟人很难让消费者共情。尽管 SLAM 等 3D 交互技术可以完善数字人与真实空间的交互,但要实现与商品的互动较为困难,更何况用户还希望能够尽可能多的了解到商品的细节。 2. 目前虚拟数字人从技术驱动方式上分为“中之人”驱动和 AI 驱动。“中之人”驱动通过动作捕捉和面部捕捉技术实现虚拟人与现实的交互,成本较高。AI 驱动的虚拟人具备更加自然、智能、人性化的交互能力。 未来,随着技术的发展,或许再过十余载,虚拟主播肉身化,具备了真实的身体,可能真的能在直播间站稳脚跟。同时,MR 设备的普及也可能带动新的一轮技术迭代,为直播带来更加沉浸式的互动购物体验。
2025-03-27
我想写一部都市玄幻小说,已经有了简单的大纲。请问使用哪款AI工具?又没有 AI味。快速的写出真人作者的小说意境。并且上下逻辑清晰30万的长篇小说。列出免费工具。
以下为您推荐两款可用于写都市玄幻小说的免费 AI 工具及相关方法: 1. Coze: 工作流核心节点: 用 Bing 搜索标题相关的内容。 用程序将搜索结果结构化(不熟悉程序的可忽略或直接复制文中的代码)。 用大模型草拟大纲,包括标题、主旨、世界观、主要角色、小说背景、情节概要。 再用大模型来写文章。 输出文章内容。 2. 与 AI 交互写作(如南瓜博士的经验): 确定主题:不写科幻,用非常规视角,如以猫为第一人称写爱情小说。与 AI 讨论主题,挑选 AI 提供的调味料,明确主题。 构思情节:先刻画人物,如喜欢书店店员艾拉这个人物,使其更丰满,再设计故事线。 希望这些工具和方法能对您创作小说有所帮助。
2025-03-19
出图是动漫/真人有什么区别和需要注意的点?
动漫出图和真人出图有以下区别和需要注意的点: 版权和法律意识:对于知名动漫角色的使用,要特别注意版权和法律问题。 模型和文件:LORA 在提炼图片特征方面功能强大,其文件通常有几十上百兆,承载的信息量远大于 Embedding,在还原真人物品时,LORA 的细节精度更高。下载的 LORA 需放在特定文件夹,使用时要注意作者使用的大模型,通常配套使用效果最佳,同时还需加入特定触发词保证正常使用。 提示词:设置文生图提示词时,正向提示词和负向提示词的准确设定对出图效果有重要影响。 参数设置:包括迭代步数、采样方法、尺寸等参数的合理设置,会影响出图的质量和效果。
2025-03-16
如何做AI数字人,我想做视频,但是不想真人出镜
以下是制作 AI 数字人视频且不想真人出镜的方法: 1. 在显示区域,拖动背景图的一个角,将图片放大到适合的尺寸,比如覆盖视频窗口,并将数字人拖动到合适的位置。 2. 增加字幕:点击文本 智能字幕 识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。 3. 至此,数字人视频就完成了。点击右上角的“导出”按钮,导出视频以作备用。 4. 如果希望数字人换成自己希望的面孔,需要用另一个工具来进行换脸。 此外,还有以下相关信息: 无需真人模特,只需上传产品图片,数字人即可手持产品进行口播展示。支持语音和口型同步,动作、姿势定制,提供 1000+多国家数字人模特,覆盖全球 28+种语言,快速生成产品宣传视频,省去拍摄烦恼。测试视频效果已接近成熟,嘴型部分仍需微调。在线体验: HeyGen 与 Sora 集成推出全新数字人技术,利用 AI 创建完全虚拟的数字人,动作、表情灵活可调,无需真人模特和重复拍摄,适配无限时长视频制作。
2025-03-15
旧照片修复
旧照片修复是 AI 绘画领域中的一项重要应用。以下是关于旧照片修复的一些相关信息: 以往解决旧照片修复问题往往需要搭建极为复杂的工作流,现在 GPT 4O 只需要一句话就可以实现。 图像放大修复是 AI 绘画领域必不可少的一部分,利用 AI 技术进行图像修复,可以让模糊的旧照片重现清晰,保留珍贵回忆。例如,以前手机拍摄的低分辨率图片,放到如今智能手机上观看会非常模糊,这时可用 AI 技术进行高清修复。 ComfyUI 结合特定工作流,只需十几个基础节点就能实现较好的老照片修复效果。 参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。 Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练,目的是让模型学会处理各种真实世界中可能遇到的图像退化情况。 Flux Ultimator 能增加小细节,增强色彩,在 0.1 的强度设置下也有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 若图片质量细节不够,可选择 T5 Clip 的 fp16 版本。
2025-04-14
如果改变照片中人物的表情
要改变照片中人物的表情,可以通过以下几种方式: 1. 在使用 SD 脸部修复插件 After Detailer 时,输入如“伤心、流泪”这样针对表情的正负提示词,人物的表情会进行相应改变。但输入“带着墨镜”可能没有效果。 2. 使用 Magic Brush 工具,选中人物的眉毛、眼睛、嘴唇等部位,通过调节轨迹的方向来实现合理的表情变化。 3. 在 Midjourney V6 中,若遇到无法改变角色脸部等问题,可按照以下步骤排除故障:首先确保写了强有力的提示以建议新的姿势、风格或细节;若角色抗拒被操纵,可能是 cref 图像支配了提示,可通过使用 cw进行处理,尝试将提示与较低的 cref 权重一起使用,如 cw 60,按照特定步骤操作,还可考虑使用 来恢复面部区域。
2025-04-14
老照片修复
老照片修复是一个具有一定复杂性但通过 AI 技术可以实现较好效果的领域。以下是一些相关信息: 在解决老照片修复问题上,以往 AI 往往需要搭建极为复杂的工作流,而现在 GPT 4O 只需要一句话就可以实现。 对于老照片上色,可启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下将图片放大到足够倍数。 对于复杂的老照片,如人物多、场景复杂、像素低的情况,可在 PS 里进行角度调整和照片裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前的工作流较复杂,现在只要十几个基础节点就能实现同样甚至更好的效果。一般先确认放大倍数,再根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用特定训练方式处理各种真实世界中可能遇到的图像退化情况。Flux Ultimator 能增加小细节和放大色调丰富性、深度,在 0.1 强度设置下有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。若图片质量细节不够,可选择 fp16 版本的 T5 Clip。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
如何让老照片变清晰
以下是让老照片变清晰的方法: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 5. 对于复杂的照片,可先在 ps 里面进行角度调整和照片裁切,然后使用上述步骤进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,给出简单的关键词,如“蓝天、绿树、灰石砖”。 另外,进行超清无损放大修复需要准备以下文件和操作: 1. 使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 2. 将 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 3. 将 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2025-04-13
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,实现方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,例如 GPT 4O 只需要一句话,就可以实现部分修复需求。 在具体的修复方法中,如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定,还可加入第二个 controlnet 来控制颜色。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只要十几个基础的节点就能实现同样的效果甚至更好。其中涉及参数的调节,一般先确认放大的倍数,然后根据出来的图片来调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-11
生成提示词的提示词
以下是关于生成提示词的相关内容: 生成提示词的思路和方法: 可以根据效果好的图片中的高频提示词去反推效果,结合不同字体效果的描述,打包到一组提示词中。提示词给到 AI 后,AI 会根据给定文字的文义,判断适合的情绪风格,然后给出适合情绪的字体和风格描述、情感氛围等,加上一些质量/品质词,形成输出提示词结构。为了让 AI 更能描述清晰风格,可以先给定多种参照举例。 具体操作步骤: 打开 AI 工具的对话框,将相关提示词完整复制粘贴到对话框。推荐使用 ChatGPT 4o。 当 AI 回复后,发送您想要设计的文字。可以仅发送想要的文字,也可以发送图片(适合有多模态的 AI)让 AI 识别和反推。 将 AI 回复的提示词部分的内容复制到即梦 AI。 对生成提示词的一些观点: 提示词生成提示词并非必要,不一定能生成最好的 Prompt 框架,修改过程可能耗时且不一定能修改好,不如花钱找人写。 一句话生成完整符合需求的 Prompt 非常困难,只能大概给出框架和构思,需要更低成本地调整需求和修改 Prompt。 不同生图工具生成提示词的特点: 即使是简短的描述,生成的提示词也非常细节、专业。 会解析需求,找出核心要点和潜在的诠释点,并给出不同的提示词方案。 提示词构建更多在于增强,而不是发散,生成的内容更符合期望。 同时生成中、英双版本,国内外工具通用无压力。 14 款 AI 生图工具实测对比: 本次实测用到的工具包括国内版的即梦 3.0(https://jimeng.jianying.com/aitool/home)、WHEE(https://www.whee.com)、豆包(https://www.doubao.com/chat)、可灵(https://app.klingai.com/cn/texttoimage/new)、通义万相(https://tongyi.aliyun.com/wanxiang/creation)、星流(https://www.xingliu.art)、LibiblibAI(https://www.liblib.art),以及国外版的相关工具。
2025-04-20
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
如何通过输入一些观点,生成精彩的口播文案
以下是通过输入观点生成精彩口播文案的方法: 1. 基于其它博主开源的视频生成工作流进行功能优化,实现视频全自动创建。 效果展示:可查看。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并将创建完成的视频链接推送至飞书消息。 涉及工具:Coze平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 智能体发布到飞书多维表格: 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 选择发布渠道,重点是飞书多维表格,填写上架信息(为快速审核,选择仅自己可用),等待审核通过后即可在多维表格中使用。 3. 多维表格的字段捷径使用: 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。 表单分享,实现填写表单自动创建文案短视频的效果。 4. 自动化推送:点击多维表格右上角的“自动化”,创建所需的自动化流程。 另外,伊登的最新 Deepseek+coze 实现新闻播报自动化工作流如下: 第一步是内容获取,只需输入新闻链接,系统自动提取核心内容。开始节点入参包括新闻链接和视频合成插件 api_key,添加网页图片链接提取插件,获取网页里的图片,以 1ai.net 的资讯为例,添加图片链接提取节点,提取新闻主图,调整图片格式,利用链接读取节点提取文字内容,使用大模型节点重写新闻成为口播稿子,可使用 Deepseek R1 模型生成有吸引力的口播内容,若想加上自己的特征,可在提示词里添加个性化台词。
2025-04-15
小红书图文批量生成
以下是关于小红书图文批量生成的详细内容: 流量密码!小红书万赞英语视频用扣子一键批量生产,这是一个保姆级教程,小白都能看得懂。 原理分析: 决定搞之后,思考生成这种视频的底层逻辑,进行逆推。这种视频由多张带文字图片和音频合成,带文字图片由文字和图片生成,文字和图片都可由 AI 生成,音频由文字生成,文字来源于图片,也就是说,关键是把图片和文字搞出来。 逻辑理清后,先找好看的模版,未找到好看的视频模版,最后看到一个卡片模版,先把图片搞出来,才有资格继续思考如何把图片变成视频,搞不出来的话,大不了不发视频,先发图片,反正图片在小红书也很火。 拆模版: 要抄这种图片,搞过扣子的第一反应可能是用画板节点 1:1 去撸一个,但扣子的画板节点很难用,Pass 掉。用 PS 不行,太死板不灵活,html 网页代码可以,非常灵活。经过 2 个多小时和 AI 的 battle,用 html 代码把图片搞出来了。这里不讲代码怎么写,直接抄就行。要抄,首先要学会拆,不管用什么方式批量生成这样的图片,都必须搞清楚里面有哪些是可以变化的参数,也就是【变量】,如主题、主题英文、阶段、单词数、图片、正文、翻译、普通单词、重点单词等。 想方法: 大概知道批量生成这样的图片需要搞清楚哪些参数,图片用 html 代码搞出来了。但问题是视频怎么搞,这种视频由多张不同的【带文字的图片】生成,比如读到哪句,哪句就高亮起来,图片也可以随着读到的句子变更。最后,视频就是用这样的图片一张张拼起来的。
2025-04-14
ai如何什么生成表格
AI 生成表格通常可以通过以下技术实现: 1. 利用变分自编码器(VAEs)和序列到序列模型(Seq2Seq)等技术生成表格文件、表格公式,并清理、创建、转换和分析表格中的文本数据,例如表格结构设计、数据分析表、表格自动化等。 2. 借助一些办公软件中的 AI 插件,如飞书中的相关插件,先通过 AI 理解图片中的内容并填充到表格列中,然后利用自带插件总结生成相关指令。 此外,在多模态数据生成中,结构化数据生成包括表格生成,多模态合成数据从大类来看有非结构化数据(图片、视频、语音等)和结构化数据(表格等)两大类。非结构化数据生成包括文本生成、图像生成、音频和语音生成、视频生成、3D 生成、合成数据生成等。
2025-04-14