以下是学习 GPT 的一些方法和步骤:
总结:今天的讨论从人工智能中的“Agent & Action”开始,转向 OpenAI 对智能体(Agent)能力模型的定义,深入探讨了 ChatGPT 中的 Action(搜索、画图、代码解释器)以及 GPT 系列中的不同 Action,使用了容易上手的 Action Webpilot 用于访问网页获取实时文本内容,初步了解了 API 的概念以及 GPT 如何通过 Action 与外部数据进行交互和使用。如果对 Action 感兴趣,可以从以上方向继续前进。
系统的了解和学习API相关的知识去网上寻找可以用的API来练习发掘GPT Action更多的潜力以上是我认为相对容易入门的知识框架,但是我们都知道:你不可能只在一次分享/一篇文章中就获得完整的Action相关知识学习虽然没有终点,但有阶段性目标。大家可以通过后续看到的不同的教程和资料,识别这些知识之间的共性和逻辑关系,然后继续深化对这个主题的理解,构建你自己的知识体系。如果你对GPT开发有兴趣,想要认识更多玩GPT的朋友,欢迎加入GPTGeeker的星球:
themoviedb.org是一个电影数据库,api是他的二级域名——就像是门牌号一样,让GPT可以来这里取数据,也就刚刚“Talk to”的对象。接下来,我教大家如何快速上手这个Action。完成“找电影”的GPT因为调用TMDB是需要API KEY的,所以我们需要先前往themoviedb.org注册后申请一个API KEY。在你注册后,还要点击邮箱验证邮件里的链接后才可以使用,注册流程就不赘述了注册后,依次点击右上角头像-账户设置- API -请求API密钥- click here选择Developer开发者,协议拉到最底下然后Accept接受。使用类型:网站。应用名称随便写,URL填ChatGPT()官网就行,简介必须写英文的,下面的除了邮箱外(因为要收验证码),大概填填提交就好,支持中国手机号。填完了就可以获得API密钥和API读访问令牌了,找个小本本先记下来下面的‘API读访问令牌’备用。构建GPT新创建一个GPT,名字描述随便写,Instructions使用以下内容:使用中文对话,当用户想找电影时,输出以下内容:详细介绍和主视觉图(取自'backdrop_path')主要剧情观影前需要了解的背景和知识搜索网上的评论并总结,你可以使用webPilot来寻找添加一个上一步的Webpilot Action。继续添加一个新的Action,在Schema里粘贴以下内容:
对于一些它不熟悉的API,还是需要在Prompt里告诉他要怎样使用。比如剩下的数据也可以用类似的方式让ChatGPT来处理,比如让他列出:上映时间'release_date'、评分'vote_average'、评分人数'vote_count':它就能很+我们最后提炼一下Action的工作流:首先,想一下你想要做一个什么样的GPT,以及是否需要外部数据——这两个谁先谁后不重要;然后,去你需要的外部数据寻找API文档,或者基于你的需求,自己开发一个API,寻找市面上可以直接用的Action ;最后,基于API文档,编写Action里的Schema,和Prompt(如何处理取回来的信息)写在最后总结一下:今天我们的讨论起始于人工智能中的“Agent & Action”,然后转向OpenAI对智能体(Agent)能力模型的定义。接着,我们深入探讨了ChatGPT中的Action(搜索、画图、代码解释器),以及GPT系列中的不同Action。使用了一个容易上手的Action Webpilot,用于访问网页获取实时的文本内容。最后,我们初步了解了API的概念,以及GPT如何通过Action与外部数据进行交互和使用。如果对Action很感兴趣,你可以从以下方向开始继续前进: