Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想学comfy ui

Answer

以下是一些关于学习 Comfy UI 的资源和信息:

  • ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。可在ComfyUI 官方文档网站获取相关信息。
  • 优设网:有详细的 ComfyUI 入门教程,适合初学者,介绍了其特点、安装方法及生成图像等内容。教程地址是优设网的 ComfyUI 入门教程
  • 知乎:有用户分享了 ComfyUI 的部署教程和使用说明,适合有一定基础并希望进一步了解的用户。可在知乎的 ComfyUI 介绍找到相关教程。
  • Bilibili:提供了从新手入门到精通各个阶段的一系列视频教程,可在Bilibili 的 ComfyUI 系列教程找到。

此外,还有以下相关内容:

  • 第 1 课:做最好懂的 Comfy UI 入门教程:Stable Diffusion 专业节点式界面新手教学。教学辅导书(含知识点扩充与分享链接):第 1 课:初始界面与基础操作。ComfyUI 整合包下载:官方 Release 页面:github.com/comfyanonymous/ComfyUI/releases ;分流度盘:pan.baidu.com/s/1d9XLF96OzWlLtUGvZiYdVA?pwd=nely ;分流 Quark:pan.quark.cn/s/ff8172bebe27(无提取码,请完整复制所有链接)。感谢@eSheep_电子羊对本期教程视频的大力支持!到 eSheep 电子羊 AIGC 社区,体验原汁原味的在线 ComfyUI:[https://www.esheep.com/?channel=zz&from=19],每日登录即可领取 100 羊毛,可支持免费生成 100 张图!
  • 学习使用 ComfyUI 的原因:更接近 SD 的底层工作原理;自动化工作流,符合 AI 精神,即消灭重复性工作;作为强大的可视化后端工具,可实现 SD 之外的功能,如调用 api 等,还可根据定制需求开发节点或模块。

内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问: 有没有comfy ui相关的学习资料?

是的,根据搜索结果,有几个网站提供了关于ComfyUI的学习教程:1.ComfyUI官方文档:提供了ComfyUI的使用手册和安装指南,适合初学者和有经验的用户。你可以在[ComfyUI官方文档网站](https://www.comfyuidoc.com/zh/)找到相关信息。1.优设网:提供了一篇详细的ComfyUI入门教程,这篇教程适合初学者,详细介绍了ComfyUI的特点、安装方法以及如何使用ComfyUI生成图像等内容。教程地址是[优设网的ComfyUI入门教程](https://www.uisdc.com/comfyui-3)。1.知乎:有用户分享了ComfyUI的部署教程和使用说明,这篇介绍适合那些已经有一定基础并希望进一步了解ComfyUI的用户。可以在[知乎的ComfyUI介绍](https://zhuanlan.zhihu.com/p/662041596)找到相关教程。1.Bilibili:提供了一系列的ComfyUI视频教程,涵盖了从新手入门到精通的各个阶段。这些视频教程可以帮助用户更直观地学习ComfyUI的使用。可以在[Bilibili的ComfyUI系列教程](https://www.bilibili.com/video/BV14r4y1d7r8/)找到视频教程。这些资源为用户提供了丰富的学习材料,从基础操作到高级技巧,可以帮助用户更好地掌握ComfyUI的使用。内容由AI大模型生成,请仔细甄别。

第1课:做最好懂的Comfy UI入门教程:Stable Diffusion专业节点式界面新手教学

为什么说Comfy UI是你2024年必须掌握的一个新的生成式AI工具?这个系列,希望可以成为你看过最好懂的Comfy UI入门教程!?教学辅导书(含知识点扩充与分享链接):[第1课:初始界面与基础操作](http://gf66fxi6ji.feishu.cn/wiki/UzFfwaOx3iY3ZAksErvcBbrpnPb)fyUI整合包下载:官方Release页面:github.com/comfyanonymous/ComfyUI/releases分流度盘:pan.baidu.com/s/1d9XLF96OzWlLtUGvZiYdVA?pwd=nely分流Quark:pan.quark.cn/s/ff8172bebe27(无提取码,请完整复制所有链接)感谢[@eSheep_电子羊](https://space.bilibili.com/1693856846)对本期教程视频的大力支持!?到eSheep电子羊AIGC社区,体验原汁原味的在线ComfyUI:[https://www.esheep.com/?channel=zz&from=19](https://www.esheep.com/?channel=zz&from=19)每日登录即可领取100羊毛,可支持免费生成100张图!ComfyUI是什么?你大概也听说过一些关于它的传说:——用它来出图更快、更流畅,但配置要求却反而更低?——只要“一键”就可以加载近乎无穷无尽的工作流,来实现包括人像生成背景替换图片转动画等在内的各种神奇功能?

ComfyUI自动生成抠图素材

我为什么学习使用ComfyUI:更接近SD的底层工作原理,在更靠近一朵鲜花的地方,才能闻到它的芳香自动化工作流(我也用webui,虽然很好,但我觉得ComfyUI更符合AI的精神,即消灭重复性工作)作为一个强大的可视化后端工具,可以实现SD之外的功能,如调用api及本文所讲的内容等可根据定制需求开发节点或模块

Others are asking
comfyui工作流
ComfyUI 工作流主要包括以下内容: FLUX 低显存运行工作流:目的是让 FLUX 模型能在较低的显存情况下运行。分阶段处理思路为:先在较低分辨率下使用 Flux 模型进行初始生成,然后采用两阶段处理,即先用 Flux 生成,后用 SDXL 放大,有效控制显存的使用,最后使用 SD 放大提升图片质量。工作流的流程包括初始图像生成(Flux)的一系列操作,如加载相关模型、处理输入提示词、生成初始噪声和引导等,以及初始图像预览;图像放大和细化(SDXL)的一系列操作,如加载 SDXL 模型、对初始图像进行锐化处理等,还有最终图像预览。 工作流网站: “老牌”workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量比较高,支持上传、下载、在线生成,免费账户总共有 50 个积分,加入 Discord 可以再加 100 积分,开通最低的每个月 6 美元的套餐后,每个月会有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从 workflow 的实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 。 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景是纯色(方便识别),选择绿幕是为了方便抠图。工作流文件可通过链接 https://pan.quark.cn/s/01eae57419ce 提取(提取码:KxgB),下载拖入 ComfyUI 中自动加载工作流进行学习。
2025-04-14
ComfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,类似于集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。
2025-04-14
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,可想象成集成了 stable diffusion 功能的 substance designer,将 stable diffusion 流程拆分成节点,实现更精准工作流定制和完善的可复现性。 其优势包括: 1. 对显存要求相对较低,启动和出图速度快。 2. 生成自由度更高。 3. 可以和 webui 共享环境和模型。 4. 能搭建自己的工作流程,可导出流程并分享,报错时能清晰发现错误所在。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势有: 1. 操作门槛高,需要有清晰逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 官方链接:https://github.com/comfyanonymous/ComfyUI 。 安装部署方面: 1. 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动,启动完成即进入基础界面。 2. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 3. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 4. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型,找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 此外,还可以直接在 Comfy UI 中训练 LoRA 模型。默认情况下,训练结果直接保存在 ComfyUI lora 文件夹中,训练后只需刷新并选择 LoRA 就可以测试。
2025-04-13
comfyui漫画工作流
ComfyUI 漫画工作流包含以下内容: 1. 绿幕工作流:包含两个组,即生成绿幕素材和绿幕素材抠图。因为 SD 无法直接生成透明背景的 png 图片,所以要先生成一张素材图,前景是重要的主体素材,背景为纯色(方便识别),选择绿幕是为了便于抠图。工作流文件链接:https://pan.quark.cn/s/01eae57419ce 提取码:KxgB 2. 动画工作流: 啊朔提供的动画工作流文件,如:
2025-04-13
comfyui动画片工作流怎么构建
构建 ComfyUI 动画片工作流的步骤如下: 1. 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以学习手动连接节点来实现最简单的 AI 女友工作流,也可以将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 3. 若 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 此外,还有以下相关工作流搭建的信息供您参考: 1. 搭建艺术二维码工作流:打开 ComfyUI 导入相应工作流。工作流所用到的节点包括大模型节点(可选择如 AWPainting、primemixanything、xxmix9realistic v40 等,并提供了相应链接)、关键词节点、Lora 节点、ControlNet 节点(选用 qrcode_monster V2 版本,下载链接:https://huggingface.co/monsterlabs/control_v1p_sd15_qrcode_monster/tree/main/v2 )、采样器节点(Step 选择高步数,35 50 即可,采样器默认的 euler a/dpmpp 2m sde )。 2. 搭建 ComfyUI 基础工作流:从零开始搭建时,首先准备加载大模型的节点,在工作区鼠标右键点击,选择 Add Node > 选择 loaders > 选择 Load Checkpoint,并选择对应的模型。然后加载 Conditioning(条件),在工作区鼠标右键点击,选择 Add Node > 选择 Conditioning > 选择 CLIP TEXT Encode,输入正反向提示词。添加采样器时,部分参数设置与 WEB_UI 有所不同,如 seed 值只有固定、随机、每次增加、每次减少这四个选项,采样器和调度器是分开的。
2025-04-13
comfyui如何本地安装
以下是在本地安装 ComfyUI 的详细步骤: 安装方式有两种,分别是安装到本地和安装到云端。本部分主要介绍本地安装方法。 本地安装方法: 1. 命令行安装: 这是普适性最强的方法,安装后二次遇到问题的概率相对较低,但对于不熟悉命令行以及代码的用户来说,可能会有一定的门槛。 ComfyUI 的源码地址在:https://github.com/comfyanonymous/ComfyUI ,安装方法写在了 Readme 中。您也可以按照 Readme 文档进行操作。 如果会 Git 请在 Terminal 运行以下代码: 如果不会用 Git,推荐使用 Github 的客户端(https://desktop.github.com/)拉代码。 下载并安装好 Github Desktop 后,打开该应用。 然后打开 ComfyUI 的 Github 页面(https://github.com/comfyanonymous/ComfyUI),点击右上角的绿色按钮,并点击菜单里的「Open with GitHub Desktop」,此时浏览器会弹出是否要打开 GitHub Desktop,点击「是」。 GitHub Desktop 会让您选择一个保存位置,按需调整,然后点击确定。看到下方特定界面,意味着完成了代码同步。 2. 安装包安装: 这种方法安装比较简单,下载就能用。 ComfyUI 的官方安装包:目前仅支持 Windows 系统,且显卡必须是 Nivida。下载地址是:https://github.com/comfyanonymous/ComfyUI/releases ,只需下载最新的版本,解压就能使用。 安装完成后: 1. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 2. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 3. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到您已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 希望以上内容对您有所帮助。
2025-04-10
怎样用ai创建精美的ui/ux原型图
以下是一些利用 AI 创建精美的 UI/UX 原型图的方法: 1. 利用 Agent 构建:通过基本的产品和运营概念,利用 Agent 构建完整的产品、架构、UX 设计文档集,并通过多次的 rerun 输出,进行多个 UI 方案的概念探索。一个 flow 能帮助产品经理一次性完成 idea 的脑暴、打磨、市场调研、竞争力分析、功能设计、架构、UE/UI 规范,到完成可交互的高保真原型,并且可以不断产出不同的 UX 原型供内部比较和概念用研。 2. 使用 Midjourney 进行 UI 设计: 直播礼物风格图标:在素材网站上找到喜欢的 icons 风格,然后喂图给机器人,并加上关键词,如“Gift icon, cartoon style, solid color background luminous effect, 3d –iw 1 –v 5 –q 2”,其中“Gift icon”可替换为其他关键词,如“beer icon”“Headphone icon”等。 主题应用 icons:关键词如“icon design, light texture, glow, Dribbble, 3D, frosted glass effect, 3D, ui, ux, –upbeta –q 2 –v 4”。 B 端图标:关键词如“喂图+A data icon, blue gradient frosted glass, frosted glass building, white transparent technology sense white city building scene, data line link, chip, OCrenderer, big data, industrial machinery, high detailight gray background with simple linear details, studio lighting, 3d, c4d, pure white background, 8k”。
2025-04-12
我想学AI,那么coze是否适合拿来练手学习AI
Coze 适合拿来练手学习 AI,原因如下: 其在智能体开发方面,低代码或零代码的工作流等场景表现较好。 对于没有代码基础和图文审美的人来说,门槛较低。 能让学习者短时间接触大量的应用场景练习和 prompt 练习。 有相关的教学资源,例如从操作界面、业务逻辑和用户界面的学习教程,还有关于数据库等概念的细化讲解。 但同时需要注意,AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。
2025-04-01
我想学提示词工程
提示词工程是指在与人工智能模型进行交互时,负责设计和优化提示的专业领域。 提示词工程师的职责包括: 1. 设计提示:根据用户需求和模型能力,考虑提示的长度、结构、措辞和信息量等因素,设计有效的提示,清晰传达用户意图,引导模型生成满意结果。 2. 优化提示:通过收集用户反馈、分析模型结果和实验不同策略等方式,不断优化提示,提高模型性能。 3. 评估提示:使用准确率、流畅度和相关性等指标评估提示的有效性。 提示词工程师需要具备以下技能和知识: 1. 领域知识:对工作领域有深入了解,以便设计有效提示。 2. 自然语言处理(NLP):了解 NLP 基本原理和技术,能够理解和生成自然语言文本。 3. 人工智能(AI):了解 AI 基本原理和技术,能够理解和使用 AI 模型。 4. 沟通能力:与用户、团队成员和其他利益相关者有效沟通。 提示工程是在人工智能领域,特别是自然语言处理和大型语言模型的背景下,一个相对较新的概念。它涉及设计和优化输入提示,以引导 AI 模型生成特定输出或执行特定任务。其关键点包括精确性、创造性、迭代和上下文理解。提示词通常指直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。提示工程不仅包括创建提示词,还涉及理解模型行为、优化提示以获得更好性能、探索模型潜在应用等。 目前提示词工程发展火热,出现了各种流派和框架,但结构化虽降低沟通难度、提高结果准确度,却也限制了更多可能性,且大部分框架不太适合解决过于主观、个人情绪或过于简单的问题,一个框架往往难以完全满足需求。
2025-03-31
我是一名ai小白,我想学习如何从一名小白利用ai创造财富
以下是为您提供的从 AI 小白利用 AI 创造财富的学习路径: 1. 搭建 AI 微信聊天机器人: 选用技术组件:极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker。 按照详细的配置步骤进行操作,包括购买服务器、配置宝塔面板,部署 Docker 和 COW 组件,绑定微信号。 了解费用问题,如极简未来平台和腾讯云服务器的费用,以及通过积分和优惠降低成本的方法。 掌握运维问题的解答,包括如何管理和维护服务器和服务,以及遇到问题时的解决方案。 2. 学习 AI 技术原理与建立框架: 理解什么是 AI 大模型及其原理。 熟悉相关技术名词,如 AI、机器学习(包括监督学习、无监督学习、强化学习)、深度学习、生成式 AI、LLM 等。 了解技术里程碑,如 2017 年 6 月谷歌团队发表的提出 Transformer 模型的论文。 如果在实战过程中有任何不懂的地方,可以随时私信相关作者。另外,如果您有兴趣学习相关的 AI Agent 知识,可以加入免费的 AI Agent 共学群,通过微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可加入。通过不断学习和探索,相信您能在 AI 的世界中创造属于自己的价值。
2025-03-24
我想学习ai视频ai生图的相关技能,并且我不想速成,我想了解其中的底层原理以便可以更好的控制生成的内容,我应该如何学习
以下是关于学习 AI 视频和生图相关技能的一些建议: 一、基础概念 1. 模型 Checkpoint:生图必需的基础模型,任何生图操作必须选定一个才能开始。 Lora:低阶自适应模型,可视为 Checkpoint 的小插件,用于精细控制面部、材质、物品等细节。 VAE:编码器,功能类似于滤镜,可调整生图的饱和度,一般选择 840000 这个。 2. 提示词 Prompt 提示词:想要 AI 生成的内容,需要花费功夫学习,可从照抄别人开始。 负向提示词 Negative Prompt:想要 AI 避免产生的内容,同样需要学习,可从照抄开始。 3. 其他概念 ControlNet:控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能,可后续学习。 ADetailer:面部修复插件,用于治愈脸部崩坏,是高阶技能。 二、参数设置 1. 迭代步数:AI 调整图片内容的次数。步数越多,调整越精密,出图效果理论上更好,但耗时越长,且并非越多越好。 2. 尺寸:图片生成的尺寸大小,需适中选择,太小生成内容有限,太大 AI 可能放飞自我。 3. 生成批次和每批数量:决定重复生成图的批次和每批次同时生成的图片数量。 4. 提示词引导系数:指图像与 prompt 的匹配程度,数字增大图像更接近提示,但过高会使图像质量下降。 5. 随机数种子:固定后可对图片进行“控制变量”操作,首次生成图时无需关注。 6. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 在学习过程中,您可以先从熟悉基础模型、提示词和常见参数设置入手,通过实践和参考他人的经验不断积累知识,逐步掌握更高级的技能和工具。
2025-03-24
我是一名ai小白,我想学习这门课程,请你帮我规划一下
以下是为您规划的 AI 学习路径: 预习周课程: AI 绘画电脑配置要求 高效 AIGC 创意者的数字人工具包 SD 插件安装方法 画静为动的 AIGC 视频制作讲解 基础操作课: AI 绘画通识课 AI 摄影虚拟的真实 AI 电影 穿越的大门 核心范式课程: 词汇的纸牌屋 核心范式应用 控制随机性 SD WebUi 体系课程: SD 基础部署 SD 文生图 图生图 局部重绘 ChatGPT 体系课程: ChatGPT 基础 核心 文风、格式、思维模型 ComfyUI 与 AI 动画课程: 部署和基本概念 基础工作流搭建 动画工作流搭建 应对 SORA 的视听语言课程: 通识 欢迎参加电影的葬礼 影像赏析 基础戏剧影视文学 学习建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能的主要分支及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: 根据自身兴趣选择特定的 AI 模块(如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧。 4. 实践和尝试: 理论学习后进行实践,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 开始方式选择: 1. 本地部署: 如果您的电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 2. 在线平台: 对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 3. 配台电脑: 非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 先验经验: 需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。 课程安排: 课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 您还可以通过参与 video battle 争取免费课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励 4980 课程一份,亚军奖励 3980 课程一份,季军奖励 1980 课程一份,入围奖励 598 野神殿门票一张。 您可以扫码添加菩萨老师助理,了解更多课程信息。让我们一起在“通往 AGI 之路”社区学习成长,探索 AI 的无限可能!
2025-03-23
我是ai基础小白,我想学习这个ai知识,请你帮我规划一下学习路径
以下是为您规划的 AI 学习路径: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 1. 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您的学习方向偏向技术研究: 1. 掌握数学基础,包括线性代数、概率论、优化理论等。 2. 学习机器学习基础,如监督学习、无监督学习、强化学习等。 3. 深入研究深度学习,包括神经网络、卷积网络、递归网络、注意力机制等。 4. 钻研自然语言处理,如语言模型、文本分类、机器翻译等。 5. 探索计算机视觉,如图像分类、目标检测、语义分割等。 6. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 涉足应用领域,如自然语言处理、计算机视觉、推荐系统等。 5. 学会数据处理,包括数据采集、清洗、特征工程等。 6. 掌握模型部署,如模型优化、模型服务等。 7. 参与行业实践,包括项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 如果您想将 AI 与宠物结合: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。
2025-03-23