Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

tensorflow和stable diffusion的结合

Answer

TensorFlow 和 Stable Diffusion 的结合涉及以下方面:

Stable Diffusion 的基本原理

  • 生成随机噪声,并逐步更改噪声以努力获得与提示一致的图像。
  • 基本结构是 encoder + diffusion + decoder 的流程。
  • Checkpoint 记录某个训练周期整个 diffusion 及可能的 encoder decoder 的参数。
  • VAE 是 encoder decoder 的参数,在大型模型中需配对以避免花屏现象。

Stable Diffusion 的技术原理

  • 核心技术来源于 Patrick Esser 和 Robin Romabach,基于潜扩散模型(Latent Diffusion Model)研究。
  • 使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,捕捉语义信息并与图像空间对齐。
  • 利用扩散模型将随机噪声图像逐渐变换为目标图像,从训练数据中学习概率分布并采样新数据。
  • 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每步变换的概率分布,以根据文本指导收敛并保持图像质量。

Stable Diffusion 训练数据集制作

  • 设置 --max_data_loader_n_workers 大于等于 2 加速数据处理。
  • 数据标注流程包括使用 BLIP 进行自然语言自动标注和使用 Waifu Diffusion v1.4 模型自动标注 tag 标签。
  • 调用 Waifu Diffusion v1.4 模型需安装特定版本(2.10.0)的 TensorFlow 库,可通过命令行检查与安装适配。
Content generated by AI large model, please carefully verify (powered by aily)

References

原理:Stable diffusion不同模型变量的work pipeline:ckpt、lora等怎么work together的?

The Illustrated Stable Diffusion – Jay Alammar – Visualizing machine learning one concept at a time.(jalammar.github.io)贴博客是因为它解释得很清楚很好了。其次要了解Stable Diffusion的工作原理是生成随机噪声,并一步一步地更改噪声,以尝试并努力获得与提示一致的图像。work like thistext2img和img2img1.text2img2.img2img现在才进入正题!有以上img2img、text2img的流程可以看到,基本结构就是encoder+diffusion+decoder的流程。这是解释以上过程的论文的流程图。Checkpoint就是记录某个训练周期这整个diffusion/可能加上encoder decoder的参数。vae就是encoder decoder的参数,在SDXL等大型模型里vae要配对不然容易出现中间diffusion过程正常后面最后decode的时候花屏现象。接下来看ControlNet。这里的unet结构就是上面论文图中4个QKV的两片甲板的。左上这个prompt进入text encoder在每个模块上加入text information(token embeddings)。这里embedding模型就是这么用的咯,像字典一样。对token取对应的embedding。Time encoder是为了记录noise amount,第几步step。右边是controlnet插入。LoRA模型的训练逻辑是首先冻结SD模型的权重,然后在SD模型的U-Net结构中注入LoRA模块,并将其与CrossAttention模块结合,并只对这部分参数进行微调训练。也就是以上的sd encoder block和sd decoder block的权重参数进行调整。

软件:SD基本介绍

Stable Diffusion核心技术来源于AI视频剪辑技术创业公司Runway的Patrick Esser,以及慕尼黑大学机器视觉学习组的Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会CVPR22上合作发表的潜扩散模型(Latent Diffusion Model)研究。Stable diffusion是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。Stable diffusion的原理可以分为以下几个步骤:1.stable diffusion使用一个新颖的文本编码器(OpenCLIP),由LAION开发并得到Stability AI的支持,将文本输入转换为一个向量表示。这个向量表示可以捕捉文本的语义信息,并与图像空间对齐。2.stable diffusion使用一个扩散模型(Diffusion Model),将一个随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,可以从训练数据中学习出一个概率分布,并从中采样出新的数据。3.在扩散过程中,stable diffusion利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布。这样,stable diffusion可以根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

--max_data_loader_n_workers:设置大于等于2,加速数据处理。讲完了上述的运行代码以及相关参数,下面Rocky再举一个美女图片标注的例子,让大家能够更加直观的感受到BLIP处理数据生成caption标签的过程:SD模型数据标注流程:使用BLIP进行自然语言自动标注上图是单个图像的标注示例,整个数据集的标注流程也是同理的。等整个数据集的标注后,Stable Diffusion训练所需的caption标注就完成了。(2)使用Waifu Diffusion v1.4模型自动标注tag标签接下来我们可以使用Waifu Diffusion v1.4模型对训练数据进行自动标注,Waifu Diffusion v1.4模型输出的是tag关键词标签,其由一个个关键词短语组成:Tag关键词标签示例这里需要注意的是,调用Waifu Diffusion v1.4模型需要安装特定版本(2.10.0)的Tensorflow库,不然运行时会报“DNN library is not found“错误。我们只需要在命令行输入以下命令即可完成Tensorflow库的版本检查与安装适配:完成上述的环境配置后,我们依然进入到SD-Train/finetune/路径下,运行以下代码即可获得tag自动标注:

Others are asking
stable diffusion底层技术
Stable Diffusion 的底层技术主要来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach 之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型的文本到图像生成模型,其原理包括以下几个步骤: 1. 使用新颖的文本编码器(OpenCLIP),由 LAION 开发并得到 Stability AI 的支持,将文本输入转换为向量表示,以捕捉文本语义信息并与图像空间对齐。 2. 采用扩散模型,将随机噪声图像逐渐变换为目标图像。扩散模型是一种生成模型,能从训练数据中学习概率分布并采样新数据。 3. 在扩散过程中,利用文本向量和噪声图像作为条件输入,给出每一步变换的概率分布,根据文本指导噪声图像向目标图像收敛,并保持图像的清晰度和连贯性。 4. 使用超分辨率放大器(Upscaler Diffusion Model),将生成的低分辨率图像放大到更高分辨率,从低分辨率图像中恢复细节信息并增强图像质量。 此外,ComfyUI 的底层依赖 Stable Diffusion,去噪过程由 UNet 网络完成。UNet 是一种编码器解码器结构,能处理多尺度特征表示。在 ComfyUI 中,去噪的每个步骤通过模型推理模块实现,调用训练好的 UNet 模型逐步将噪声图像还原成有意义的图像。交叉注意力机制在 Stable Diffusion 中很重要,允许模型在生成过程中融入文本提示、图像、语义信息等条件,在 ComfyUI 中通过“文本提示”和“条件输入”节点实现。跳跃连接是 UNet 的核心部分,能在不同尺度之间共享特征,在 ComfyUI 的节点网络中表现为中间过程数据的流转。切换器代表在去噪过程中的不同阶段对特征流的控制,在 ComfyUI 中可通过修改模型参数节点或自定义网络结构节点对不同阶段的噪声去除策略进行微调。 Stable Diffusion 还具有以下优点: 1. 可以处理任意领域和主题的文本输入,并生成与之相符合的多样化和富有创意的图像。 2. 可以生成高达 2048x2048 或更高分辨率的图像,且保持良好的视觉效果和真实感。 它还可以进行深度引导和结构保留的图像转换和合成,例如根据输入图片推断出深度信息,并利用深度信息和文本条件生成新图片。
2025-04-15
stable video diffusion开发
以下是关于 Stable Video Diffusion 开发的相关信息: SVD 介绍: 简介:Stable Video Diffusion 是 Stability AI 于 2023 年 11 月 21 日发布的视频生成式大模型,用于高分辨率、先进的文本到视频和图像到视频生成的潜在视频扩散模型。它支持多种功能,用户可调整多种参数,但对硬件要求较高,支持的图片尺寸较小,应用场景受限。 模型版本:开源了两种图生视频的模型,一种能生成 14 帧的 SVD,另一种是可以生成 25 帧的 SVDXL,发布时通过外部评估超越了人类偏好研究中领先的封闭模型。 主要贡献:提出系统的数据管理工作流程,将大量未经管理的视频集合转变为高质量数据集;训练出性能优于现有模型的文本到视频和图像到视频模型;通过特定领域实验探索模型中运动和 3D 理解的强先验,预训练的视频扩散模型可转变为强大的多视图生成器,有助于克服 3D 领域数据稀缺问题。 部署实战避坑指南: 直接使用百度网盘里准备好的资源,可规避 90%的坑。 若一直报显存溢出问题,可调低帧数或增加 novram 启动参数。 云部署实战中,基础依赖模型权重有两个 models–laion–CLIPViTH14laion2Bs32Bb79K 和 ViTL14.pt,需放到指定路径下。 总结: Sora 发布后,此前的视频生成模型相形见绌,但 Stable Video Diffusion 作为开源项目可在自己机器上自由创作无需充值。SVD 生成的视频画质清晰,帧与帧过渡自然,能解决背景闪烁和人物一致性问题,虽目前最多生成 4 秒视频,与 Sora 的 60 秒差距大,但在不断迭代。我们会持续关注其技术及前沿视频生成技术,尝试不同部署微调方式,介绍更多技术模型,更多精彩内容后续放出。 同时,您还可以加入「AIGCmagic 社区」群聊交流讨论,涉及 AI 视频、AI 绘画、Sora 技术拆解、数字人、多模态、大模型、传统深度学习、自动驾驶等多个方向,可私信或添加微信号:【m_aigc2022】,备注不同方向邀请入群。
2025-04-15
stable diffusion是runway和goole联合开的吗
Stable Diffusion(简称 SD)不是由 Runway 和 Google 联合开发的,而是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。 Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型,其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于这两位开发者之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中根据文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高的分辨率。 围绕 Stable Diffusion 等基础模型的兴奋和关注正在产生惊人的估值,但新研究的不断涌现确保新模型将随着新技术的完善而更替。目前,这些模型在法律方面也面临挑战,例如其训练所使用的大量内容数据集通常是通过爬取互联网本身获得的,这可能会引发法律问题。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 StabilityAI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换的概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。在文生图任务中,将一段文本输入到模型中,经过一定迭代次数输出符合文本描述的图片;图生图任务则在输入文本基础上再输入一张图片,模型根据文本提示对输入图片进行重绘。输入的文本信息通过 CLIP Text Encoder 模型编码生成与文本信息对应的 Text Embeddings 特征矩阵,用于控制图像生成。源代码库为 github.com/StabilityAI/stablediffusion ,当前版本为 2.1 稳定版(2022.12.7),其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。
2025-04-15
stable diffusion开发公司
Stable Diffusion 是由初创公司 Stability AI、CompVis 与 Runway 合作开发的。其核心技术来源于 AI 视频剪辑技术创业公司 Runway 的 Patrick Esser 以及慕尼黑大学机器视觉学习组的 Robin Romabach。该项目的技术基础主要来自于他们之前在计算机视觉大会 CVPR22 上合作发表的潜扩散模型(Latent Diffusion Model)研究。 Stable Diffusion 是一种基于潜在扩散模型(Latent Diffusion Models)的文本到图像生成模型,能够根据任意文本输入生成高质量、高分辨率、高逼真的图像。其原理包括使用新颖的文本编码器(OpenCLIP)将文本输入转换为向量表示,利用扩散模型将随机噪声图像逐渐变换为目标图像,在扩散过程中以文本向量和噪声图像作为条件输入给出变换概率分布,最后使用超分辨率放大器将生成的低分辨率图像放大到更高分辨率。 Stable Diffusion 总共有 1B 左右的参数量,可以用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等丰富的任务。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行,当前版本为 2.1 稳定版(2022.12.7),源代码库为 github.com/StabilityAI/stablediffusion 。
2025-04-15
有stable diffusion的学习教程吗
以下为您提供一些 Stable Diffusion 的学习教程: 1. 超详细的 Stable Diffusion 教程: 介绍了为什么要学习 Stable Diffusion 及其强大之处。 指出 Stable Diffusion 是能根据输入文字生成图片的软件。 强调学习目的是快速入门,而非深入研究原理,通过案例和实际操作帮助上手。 2. 深入浅出完整解析 Stable Diffusion(SD)核心基础知识 知乎: 包含 Stable Diffusion 系列资源。 零基础深入浅出理解 Stable Diffusion 核心基础原理,如模型工作流程、核心基础原理、训练全过程等。 解析 Stable Diffusion 核心网络结构,包括 SD 模型整体架构、VAE 模型、UNet 模型等。 介绍从 0 到 1 搭建使用 Stable Diffusion 模型进行 AI 绘画的流程。 列举 Stable Diffusion 经典应用场景。 讲解从 0 到 1 上手使用 Stable Diffusion 训练自己的 AI 绘画模型。 3. 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?:
2025-03-28
在tensorflow中实现分词器tokenizer
在 TensorFlow 中实现分词器(tokenizer)的方法如下: 1. 对文本数据进行预处理,添加开始和结束特殊标记。 2. 通过使用 TensorFlow 的文本矢量化模块,可以创建分词器。创建分词器后,可以将文本中的词转换为索引,例如像“开始标记”“猫”“狗”等。 3. 在 Stable Diffusion 中,Tokenizer 首先将 Prompt 中的每个词转换为一个称为标记(token)的数字,这是计算机理解单词的方式。然后,通过 text_encoder 将每个标记都转换为一个 768 值的向量,称为嵌入(embedding),用于 UNet 的 condition。 4. 需要注意的是,prompt 的长度会占用 token 数量。在大型语言模型中,输入的文本会被分词器拆分成一串 token 序列输入给模型,每个 token 通常对应一个单词或字符串片段。不同的分词器有不同的分词策略和词表,对于同一个 prompt,可能得到不同的 token 数。很多大模型对输入长度有限制,比如 GPT3 接受的最大 token 数是 2048。因此,要控制好 prompt 的长度,可使用一些技巧来节省 token 数,如使用简洁的词语、缩写/代词替代复杂词组、去除不必要的标点和空格、小写替代部分大写单词等。对于特别复杂的输入,可以考虑分步骤输入以规避长度限制。
2024-09-23
ai可以和哪些领域结合,让普通的人的生活得到帮助
AI 可以与以下领域结合,为普通人的生活提供帮助: 1. 教育培训: 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,缓解教育资源不平等的问题。 人工智能生成的虚拟角色也可以是数字陪伴,促进儿童成长。 2. 娱乐和休闲: 在影视行业,AGI 时代每个人都可以让 AI 根据自己喜好“量身定制”电影或剧集,甚至互动式地发展剧情。 在游戏领域,AGI 可以创造出高度逼真的虚拟角色,与玩家互动,使游戏世界更加生动。 在音乐、美术创作方面,AGI 能与人类艺术家协作或作为创作者助理,普通人也可以通过简短描述让 AGI 生成作品。 3. 日常生活: AGI 可以读取用户日程和邮件,自动为用户安排最优路线、预订餐厅、购买日用品等。 在购物时,AI 可以根据用户的尺寸和喜好筛选商品清单,甚至替用户做决定。 但在享受这些便利的同时,也需要警惕过度依赖带来的问题,如人类判断力和独立思考能力的退化。
2025-04-14
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
CRM那些功能适合和ai结合
AIGC 在 CRM 中的应用主要包括以下几个方面: 1. 个性化营销内容创作:根据客户个人信息、购买历史、偏好等数据生成个性化且富有创意的营销文案、视觉内容等,提高营销效率和转化率。 2. 客户服务对话系统:基于 AIGC 的对话模型开发智能客服系统,通过自然语言交互解答客户咨询、投诉等,缓解人工客服压力。 3. 产品推荐引擎:借助 AIGC 生成丰富的产品描述、视觉展示等内容,结合推荐算法为客户推荐更贴合需求的产品,提升销售业绩。 4. CRM 数据分析报告生成:AIGC 可以自动生成数据分析报告,包括文字、图表、视频演示等形式,加快报告生产流程。 5. 智能翻译和本地化:提供高质量的多语种翻译及本地化服务,帮助企业打造全球化营销内容。 6. 虚拟数字人和营销视频内容生成:快速生成虚拟数字人形象、场景背景和营销视频内容,降低视频制作成本。 7. 客户反馈分析:高效分析海量客户反馈文本和多媒体信息,挖掘客户需求和潜在痛点。 以下是一些与 AI 结合的 CRM 相关产品推荐: 1. Clay:一款 AI 驱动的联系人应用软件,自动整理联系人信息,帮助管理个人和职业人脉。 2. Promptden:提示词交流和交易社区,可探索、发现和分享从 ChatGPT 和 Bard 文本提示到 MidJourney、Stable Diffusion 等 AI 生成的图像。 3. Parthean AI:财务教练,将 AI 工具与个人财务信息集成,提供定制答案,帮助用户制定预算并规划财务目标。 4. TinyStudio:免费的 Mac 应用程序,利用 M1/M2 芯片为视频和音频文件生成字幕。 5. Pagegpt:提供个性化网页设计,生成文案和图片,帮助吸引和转化顾客。 此外,工具使用或函数调用通常被视为从 RAG 到主动行为的第一个半步,为现代人工智能栈增加新的层。一些流行的原语如网页浏览(Browserbase、Tiny Fish)、代码解释(E2B)和授权+认证(Anon)已经出现,它们使 LLMs 能够导航网络、与外部软件(如 CRM、ERP)交互并运行自定义代码。例如,Omni 的计算 AI 功能利用 LLM 直接输出适当的 Excel 函数到电子表格中,然后执行计算并自动生成复杂查询供用户使用。
2025-04-09
扣子AI在中小学数学教学中可以怎么结合使用
扣子 AI 在中小学数学教学中的结合使用可以参考以下方面: 1. 自适应学习系统:例如使用像 Khan Academy 这样的平台,结合 AI 技术为学生提供个性化的数学学习路径和练习题,根据学生的能力和需求进行精准推荐。 2. 智能题库和作业辅助:利用像 Photomath 这样的工具,通过图像识别和数学推理技术为学生提供数学问题的解答和解题步骤。 3. 虚拟教学助手:使用如 Socratic 这样的应用,借助 AI 技术为学生解答数学问题、提供教学视频和答疑服务,帮助学生理解和掌握数学知识。 4. 交互式学习平台:参与像 Wolfram Alpha 这样的交互式学习平台的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 此外,为小学数学课设计教育游戏时,可以考虑以下几个方面: 1. 游戏机制:选择适合小学生的游戏机制,如跳跃、追逐、搜寻等,增加游戏趣味性和参与度。 2. 游戏元素:选择数学相关的元素,如数字、运算符号、图形等,将它们融入游戏中,使学生通过游戏了解或巩固相应的数学知识。
2025-04-01
ai和office软件结合的插件有哪些
以下是一些 AI 和 Office 软件结合的插件: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,能通过聊天形式完成用户需求,如数据分析和格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Office 软件中,进一步提高工作效率和智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-01
AI与autocad ,blender结合应用
以下是关于 AI 与 AutoCAD、Blender 结合应用的相关信息: 与 Blender 结合应用: 通过联网搜索向 AI 提供最新信息,常见的 AI 助手采用此方式获取实时信息。 可通过 API 向 AI 提供自有系统数据,解决行业内部或自有系统信息接入问题。 MCP 协议为 AI 大模型与数据源集成提供统一标准,实现更可持续的架构。 可以通过一句话提示,让 Claude 自动化打开 Blender 将 2D 图片转为 3D 建模,还能基于此搭建互动网页。 有网友展示“Rodin AI”在 Blender 中通过 Blender MCP 进行自动 3D 建模的过程。 幻之境开发小组联合开发了基于 STABLE DIFFUSION ComfyUI 核心的 Blender AI 插件“无限圣杯”。 Blender 是免费开源的三维制作软件,与 ComfyUI 在工作流程上天然适配。 目前提供的内容中未涉及 AI 与 AutoCAD 结合应用的相关信息。
2025-04-01