知识库是指在特定领域中存储和组织的长期知识集合。
在专家系统中,知识库是从人类专家那里人工提取的,不会因外部咨询而改变,它允许从一个问题状态前往另一个问题状态,因此也被称为动态知识。例如,根据动物物理特征判断动物的专家系统就包含这样的知识库。
在人工智能领域,由于大模型存在数据有日期限制、无法感知公司内部私有数据等导致不准确的问题,知识库的出现就是为了解决这些数据准确性的问题。大模型可以额外学习外接知识库中的知识,从而精准回复用户。典型应用如客服系统,公司将用户所有问题及答案记录在文档中,以知识库形式投喂给大模型,当用户询问时,大模型就能依据知识库给出更准确回答。
“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,它不仅是知识的存储库,还是连接学习者、实践者和创新者的社区,让大家在这里交流思想、共同成长。
符号人工智能的早期成就之一是专家系统——为充当某个有限问题领域的专家而设计的计算机系统。它们基于从一个或多个人类专家那里提取的知识库,并包含一个推理引擎,在此基础上进行推理。专家系统就像人类的推理系统一样,包含短期记忆和长期记忆。同样,在以知识为基础的系统中,我们会区分以下几个部分:问题记忆(Problem memory):包含与当前要解决的问题有关的知识,如病人的体温或血压、是否有炎症等。这种知识也被称为静态知识(static knowledge),因为它包含了快照信息,记录着我们在当前状态下对问题的了解——即所谓的问题状态(problem state)。知识库(Knowledge base):代表某个问题领域的长期知识。它是从人类专家那里人工提取的,不会因外部的咨询而改变。由于它允许我们从一个问题状态前往另一个问题状态,因此也被称为动态知识(dynamic knowledge)。推理引擎(Inference engine):协调在问题状态空间中搜索的整个过程,必要时向用户提问。它还负责找到适用于每个状态的正确规则。举例来说,下面这个专家系统是根据动物的物理特征来判断动物的:
“我们都知道,探索知识善如磨刀,面对复杂多元的在人工智能(AGI)领域,如何打破条条框框,去捕捉每一丝有价值的信息和知识呢?那么我相信答案就是:通往AGI之路「WaytoAGI」,一个由开发者、学者和有志人士等等参与的学习社区和开源的AI知识库。在这里,你既是知识的消费者,也是知识的创作者。这个世界上有很多走走停停的探索者,所以,我们以"无弯路,全速前进"为目标,助力每一个怀揣AI梦想的人能疾速前行。每一份崭新的尝试都值得赞美,每一份坚毅的付出都应得到鼓励。AI知识库的生长正得益于每一个你平凡而坚持的时间,因为你们的一致肯定和支持,我们才充满信心,不断修炼,探寻AGI领域的无限可能。「通往AGI之路」不仅是一个知识库,它是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。我们在共创计划的道路上,不断收获,快速成长。对于一切,我们都满怀期待,乐观向阳。继续坚持,信息世界中你我皆是探索者。
大模型并不是100%准确的,它会产生幻觉,主要是因为以下两点训练大模型的数据是有日期限制的,如果你询问大模型超出日期限制的问题,则大模型无法准确回答大模型的数据来源于互联网,如果是公司内部的私有数据,则大模型无法感知因此知识库的出现就是为了解决大模型的数据准确性的问题。大模型可以额外学习外接知识库中的知识,从而来精准回复用户。知识库中最典型的一个应用就是客服系统:公司可以将用户所有问题以及答案记录在文档中,然后以知识库的形式投喂给大模型。这样当用户通过自然语言询问问题时,大模型就可以根据知识库中的内容给出更加准确的回答。