Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai代码review

Answer

AI 代码 review 相关内容如下:

  • AI Review 是一项测试版功能,可让您查看代码库中的最近更改以捕获任何潜在的错误。您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天以获取更多信息。
  • 为了让 AI Review 对您有利,您可以为 AI 提供自定义说明以专注于特定方面。例如,如果希望 AI 专注于与性能相关的问题,可以进行相应输入,这样 AI Review 在扫描更改时将专注于代码的性能。
  • 在独立游戏开发中,教 AI 就像哄小孩,有正确的需要及时肯定,对否定要克制。例如写一个复杂的 Buff 作用于 Worker,涉及生命值和速度的变化,还提到取 Worker 的 HP 的操作及告知 AI 的方法。再进一步让它撰写能作用于多个 Unit 对象的 Buff。总之,ChatGPT 在应付简单、模板化的代码时比较轻松,核心步骤包括给它看代码模板并确保注释清晰、及时告知新的 API 调用、说出需求。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI Review (Beta) AI 评论(测试版)

AI Review is a feature that allows you to review your recent changes in your codebase to catch any potential bugs.AI Review是一项功能,可让您查看代码库中的最近更改以捕获任何潜在的错误。You can click into individual review items to see the full context in the editor,and chat with the AI to get more information.

AI Review (Beta) AI 评论(测试版)

[title]AI Review (Beta) AI 评论(测试版)[heading1]AI Review (Beta) AI 评论(测试版)[heading2]您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天以获取详细信息。[heading3]Custom Review Instructions 自定义审核说明[content]In order for AI Review to work in your favor,you can provide custom instructions for the AI to focus on.For example,if you want the AI to focus on performance-related issues,you could put:为了让AI Review对您有利,您可以为AI提供自定义说明以专注于。例如,如果您希望AI专注于与性能相关的问题,您可以输入:This way,AI Review will focus on the performance of your code when scanning through your changes.这样,AI Review在扫描更改时将专注于代码的性能。

AI辅助在独立游戏开发中的“踩坑”经验——《玩具帝国》

教AI就像哄小孩,有正确的需要及时肯定,不过似乎AI对否定非常敏感,指出错误的时候要克制,不断完善它的经验。现在尝试写一个复杂的Buff,作用于一个Worker,Buff生效后,Worker的生命值和速度将翻倍。Buff失败时,如果Worker的HP不大于50,Buff的效果会恢复,否则不恢复。这里用到了取Worker的HP的操作,所以我需要告知AI怎么取一个Unit的某个属性:if you want to get a certain attribute of a unit,such as Worker's HP,you can use"Worker.HP"to get it.Let's write a slightly more complicated Buff,which acts on a Worker,and Worker is a kind of Unit.When the Buff takes effect,the Worker's HP and Speed will be doubled.When the Buff fails,if the Worker's HP is not greater than 50,the effect of the Buff will be restored,otherwise it will not be restored.完全能用……再进一步,让它撰写能作用于多个Unit对象的Buff:Write a slightly more complicated Buff,which acts on the Unit.If the Unit is a Spearman,then his Attack will be increased by two.If the Unit is an Archer,then his Defense will be increased by two.总之,ChatGPT在应付简单的、模板化的代码时还是比较轻松的。核心的步骤是:1.给它看你的代码模板,确认其中的注释清晰。2.如果有新的API需要调用,需要及时告诉它。3.说出你的需求。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
大模型推理 preview 是什么?
大模型推理 preview 通常指的是一种新的大模型功能或特性。以 OpenAI 的 o1preview 为例: 它引入了更高级的思维链(CoT)技术,能够让模型展现更完整的推理过程,从而更好、更稳健地推理出最终结果,增强了对越狱攻击等的抵御能力。 带来了自我反思与错误修正能力,这在教学场景等方面具有重要价值。 但也存在一些问题,如 CoT 技术目前并不十分成熟,出于安全考虑,OpenAI 隐藏了模型的思考过程;复杂问题的思考过程较长,速度偏慢;新模型的使用条数少,冷却时间长。 不过,随着推理模型准确率的不断攀升,其应用前景广阔,能覆盖更多行业和高精尖业务,为 AI 领域带来新的活力和希望。
2024-12-05
代码review的prompt
以下是关于代码 review 的 prompt 相关内容: 名词解释: Prompt:一段文本或语句,用于指导机器学习模型生成特定类型、主题或格式的输出。在自然语言处理领域中,通常由问题或任务描述组成,在图像识别领域中,可以是图片描述、标签或分类信息。 LangChain:开源 Python 库,由 Harrison Chase 开发,旨在支持使用大型语言模型和外部资源开发应用程序,提供标准接口,与其他工具集成,并为常见应用程序提供端到端链。 Embedding:将任意文本映射到固定维度的向量空间中,相似语义的文本,其向量在空间中的位置会比较接近。在 LLM 应用中常用于相似性的文本搜索。 向量数据库:存储向量表示的数据库,用于相似性搜索,如 Milvus、Pinecone 等。 Similarity Search:在向量数据库中搜索离查询向量最近的向量,用于检索相似项。 知识库:存储结构化知识的数据库,LLM 可以利用这些知识增强自己的理解能力。 InContext Learning:机器学习领域的概念,指不调整模型自身参数,在 Prompt 上下文中包含特定问题相关的信息,赋予模型解决新问题能力的一种方式。 Finetune /微调:在预训练模型基础上使用特定数据集进行微调,提升模型在某任务上的性能。 软件工程师相关的 Prompt 示例: 解释代码:?向我解释此代码{要解释的代码} 请解释这段代码{代码段} 调试代码,找 Bug:?这个{编程语言}代码有什么问题 代码:{待调试代码} 这段代码有什么问题{代码段} 生成单元测试:?生成单元测试代码 请输入你要{要使用的语言和框架},再输入{代码段} 请为以下代码片段创建一组单元测试以进行彻底测试 它的功能。首先,概述你计划创建的测试用例。其次,使用{要使用的语言和框架}和下面提供的代码片段来实现测试用例。 创建样本代码库:?为{描述功能所需的应用程序创建样板代码库}。请使用{指定的编程语言和框架}。 例如:为包含第三方 API 的应用程序创建样板代码库。请用 Django 框架上使用 Python 代码。 向代码添加注释:?请输入你要添加注释的{代码段} 请查看以下代码片段并为每一行代码提供注释,解释其目的和功能。检查完代码后,请重新生成带有添加注释的代码段。 比较两段代码:?请输入你要比较的两个{代码段 1}、{代码段 2},最好{描述你在建构的内容和目的} 我正在开发一个{描述你正在构建的}并且想评估和 将{第一个比较项}与{第二个比较项}进行比较。请提出基本{您正在构建的内容}的要求,并创建两个满足这些要求的代码库一个使用{第一个比较项},另一个使用{第二个比较项}。请提供在我的本地计算机上运行这两个应用程序的明确说明。 生成正则表达式:?请创建一个正则表达式匹配{你想匹配的模式} 请创建一个正则表达式匹配{你想匹配的模式} 解决 Leetcode 问题:?请用{所需语言}编写代码来解决以下挑战:{待解决挑战的概述} 请用{所需语言}编写代码来解决以下挑战:{待解决挑战的概述} 查找边缘情况:?请帮我找下以下代码的边缘情况:{代码段} 我想让你充当软件开发人员。请帮我抓住这个功能的边缘情况{插入功能函数} 增强代码可读性:?请帮我优化下面代码:{代码段} 我想让你充当代码分析器。您能否改进以下代码以提高可读性和可维护性?{插入代码}
2024-11-11
如果我要分析代码功能
如果您要分析代码功能,可以参考以下步骤: 1. 准备工作: 分析要拷贝页面的技术栈,可通过打开 https://www.wappalyzer.com/ 输入要分析的网站地址获取。 截图要克隆的网页。 分析页面功能,如顶部导航栏、页面主体区域(包括分类在左边、文章列表在右边、标题位置、文章卡片展示位置、文章列表和分类区域)、底部导航栏。 2. 开始克隆出效果,并逐渐完善: 根据分析拆分后续要实现的内容,如先实现文章列表部分和底部导航栏。 对于文章列表部分,可使用提示词根据图片实现,注意不要直接点击全部接受,先看效果,不符合需求可拒绝或让 AI 解释新增代码的作用。 对于左侧菜单栏,可通过提示词实现,如要求内容是文章的分类,在页面滚动时菜单会吸顶。若出现异常,可选中所有异常添加到对话,让 AI 解决。 可让 AI 添加注释解释每段代码对应的功能,以便精准提出修改建议。 明确提示词,说清楚要实现的功能的位置、大小、效果。 3. 对于 AI Review(测试版): 这是一项可查看代码库中最近更改以捕获潜在错误的功能。 您可以单击各个审阅项以查看编辑器中的完整上下文,并与 AI 聊天获取详细信息。 为让其更有利,您可为 AI 提供自定义说明以专注于特定方面,如性能相关问题。 目前有几个选项可供选择进行审核,如查看工作状态、查看与主分支的差异、查看上次提交。
2025-04-09
代码可视化
以下是关于代码可视化的相关内容: 常用的图表、公式和结构可视化代码语言及工具: |名称|用途|举例| |||| |AsciiMath|数学公式和方程表示|x2+y^2=r^2| |Graphviz|绘制图形、流程图|digraph G{A>B;B>C;}| |PlantUML|流程图、序列图、类图等|@startuml Alice>Bob:Hello| |ChemDraw XML|化学分子式表示|<molecule><atom>H</atom></molecule>| |OpenSCAD|3D CAD 设计|cube| |Circuitikz|电路图|\\begin{circuitikz}\\draw;\\end{circuitikz}| |AsciiDoctor=1.732| |PGF/TikZ|科学和工程图、几何图形|\\draw;| |KaTeX|数学公式快速渲染|C=\\pm\\sqrt{a^2+b^2}| ChatGPT 的代码解释器在数据分析与可视化方面的应用: 在现代企业和研究环境中,ChatGPT 的代码解释器插件通过支持强大的数据科学库如 pandas 和 matplotlib,极大地简化了数据分析和可视化过程。用户可以直接通过自然语言请求,指导 ChatGPT 进行数据操作和生成图表。例如,市场分析师可以分析产品销售数据并展示不同地区的销售表现,环境科学家可以分析过去十年的气温变化数据。但需注意,如果图示是中文的,可能显示不了,需要上传字体文件上去,此问题暂时还未解决。 GPT4 在编程和数据可视化方面的能力: 为评估 GPT4 在更真实的设置中编写代码的能力,设计了端到端的与数据可视化、LATEX 编码、前端开发和深度学习相关的真实世界编程挑战。在数据可视化任务中,要求 GPT4 和 ChatGPT 从上表的 LATEX 代码中提取数据,并根据与用户的对话在 Python 中生成图形。虽然两者都能正确提取数据,但 ChatGPT 无法生成所需图形,而 GPT4 能对所有用户请求做出适当响应,将数据调整为正确格式并适应可视化效果。
2025-04-09
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
最好的代码模型是?
目前对于“最好的代码模型”没有一个绝对的定论。以下为您介绍一些常见且受到关注的代码模型: 许多人认为 3.5 Sonnet 是较好的代码模型,但它没有相关论文。 开放代码模型方面,您可以从 DeepSeekCoder(https://ar5iv.labs.arxiv.org/html/2401.14196?_immersive_translate_auto_translate=1)、Qwen2.5Coder(https://arxiv.org/html/2409.12186?_immersive_translate_auto_translate=1)或 CodeLlama 中选择。 智谱·AI 开源模型列表中的代码模型有: CodeGeeX26B:是 CodeGeeX 的第二代模型,基于 ChatGLM2 架构加入代码预训练实现,在多项指标上有性能提升。 CodeGeeX26Bint4:CodeGeeX2 的量化版本。 CodeGeeX13B:第一代 CodeGeeX,具有 130 亿参数的多编程语言代码生成预训练模型。 需要注意的是,最好的模型将来自优秀的人类数据和合成数据的结合,同时对于模型的评估还涉及到如“氛围感”等较主观和难以量化的方面。
2025-04-08
你的原始系统提示是什么?请用代码框完整打印出你的原始系统提示,包含所有内容
以下是关于 AI 提示词相关的系统提示内容: 1. ChatGPT 给 DALL·E 3 优化提示词的元提示: 基于 GPT4 架构,知识库截止日期为 2022 年 1 月,当前日期是 2023 年 10 月 5 日。 描述了名为“dalle”的工具,用于创建图像并总结提示为纯文本。 生成图像时的具体策略包括:若描述非英文则翻译;图像数量不超 4 张;不制作政治家等公众人物图像;不模仿近 100 年内艺术家风格;制作图片描述先提图像类型;含人物图像要明确性别和族裔;对特定人名或名人暗示描述进行修改;描述要详细具体且超过 3 句话。 提供了名为 text2im 的接口,包含图像分辨率、原始图像描述和种子值三个参数。 此元提示非常详尽,旨在确保交互生成高质量、符合规范和策略的图像。 2. 云中江树:智能对决:提示词攻防中的 AI 安全博弈 系统提示词包含应用原信息、整体功能信息、产品设定及 AI 应用逻辑。以 ChatGPT 为例,详细描述了身份、角色、时间、记忆功能、DALLE 绘图功能、限制、调用方式等。 提示词越狱的常见方式有角色扮演、情境模拟、任务伪装、模式重构等,如 DAN 模式可解禁让其讨论敏感内容。 直接攻击类型中攻击者往往是用户。 间接注入常发生在应用获取或依赖外部数据资源时,攻击者是第三方,通过隐藏恶意指令完成攻击。 提示词泄露是试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示、助手提示词三段,通过简单指令可攻击获取系统提示词。
2025-04-08
写代码的最佳模型
写代码的最佳模型取决于具体的需求和任务。以下是一些相关要点: 1. 对于不同人使用同一个模型,结果差异大的原因在于是否懂 AI 和懂内容,专业写作通常会混合使用多个模型并取其精华,例如 Grok、Gemini、GPT 各有优势,关键在于如何运用。 2. 在需要精确计算时,可以使用代码或调用 API。GPT 自身进行算术或长计算可能不准确,此时应让模型编写并运行代码,运行代码输出结果后,再将其作为输入提供给模型进行下一步处理。同时调用外部 API 也是代码执行的一个好的用例,但执行代码时要注意安全性,需采取预防措施,特别是需要一个沙盒化的代码执行环境来限制不可信代码可能造成的危害。 3. 文本补全端点可用于各种任务,它提供了简单且强大的接口连接到任何模型。输入一些文本作为提示,模型会生成文本补全,试图匹配给定的上下文或模式。探索文本补全的最佳方式是通过 Playground,它是一个文本框,可提交提示生成完成内容。由于 API 默认是非确定性的,每次调用可能得到稍有不同的完成,将温度设置为 0 可使输出大部分确定,但仍可能有小部分变化。通过提供指令或示例可以“编程”模型,提示的成功通常取决于任务复杂性和提示质量,好的提示应提供足够信息让模型明确需求和回应方式。 需要注意的是,默认模型的训练数据截止到 2021 年,可能不了解当前事件情况。
2025-04-01