对于 AI 小白,以下是一些学习使用 AI 的建议:
此外,还可以了解一些技术原理和框架,如:
推荐你从一个最最基础的小任务开始让AI先帮你按照best practice写一个say hello的示例程序,并解释每个文件的作用及程序运行的逻辑。这样,你可以通过最基础的绝对不会出错的小任务,来学会必备的调试技能。“我在学习写chrome插件。请选择最适合小白上手的技术栈,按照best practice为我生成一个简单的示范项目,但要包含尽可能全面的典型文件和功能。请为我讲解每个文件的作用和程序运行的逻辑。”此处要求AI按照best practice来写非常重要:文件一开始就有良好的组织,后续功能复杂了才不会乱套。还有一个偷懒小妙招:如果你用的是o1-mini,你可以在prompt最后添加这句:“请生成create.sh脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果windows机器则是create.cmd)足够勤勉的的o1-mini会为你生成一段超级长的代码,并给出提示,你只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。[heading2][heading1]2明确项目需求[content]你可以通过和AI的对话,来逐步明确项目需求。(如果你是训练有素的产品经理,可以忽略这一步)“我想要开发一个XXX。你能否像一个高级别的还懂技术的产品经理指导初级产品经理那样,向我提问,帮我梳理清产品功能,尤其要注意可能会涉及到技术方案选择的关键点。请一问一答,帮我由全局到细节逐步梳理。不要一口气问我太多问题。”来来回回的对话后,你可以让AI帮助你梳理出产品需求文档。这样的文档会包含影响技术方案选择的细节,比直接给AI一段口头的需求描述要准确地多。在后续开发的时候每次新起一个聊天就把文档发给AI并告知你现在在做第几点功能,会非常方便。[heading2]
[title]问:新手如何学习AI?了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。
[title]【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)5)RAG——检索增强生成Retrieval-Augmented Generation,外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给AI;可搭建企业知识库和个人知识库。6)PAL——程序辅助语言模型Program-Aided Language Model,2022年一篇论文中提出;比如对于语言模型的计算问题,核心在于不让AI直接生成计算结果,而是借助其他工具比如Python解释器作为计算工具。7)ReAct——2022年一篇《React:在语言模型中协同推理与行动》的论文提出了ReAct框架,即reason与action结合,核心在于让模型动态推理并采取行动与外界环境互动。比如用搜索引擎对关键字进行搜索,观察行动得到的结果。可借助LangChain等框架简化构建流程。个人总结:看很多大佬的发言,都说要关注或直接阅读技术论文,比如产品经理转型AI产品经理,也需要懂技术脉络。而小白直接看技术论文还是有难度,虽然现在可以让AI辅助阅读,不过还是要完成一定的知识储备。而林粒粒呀的这期视频是一个很好的科普入门,欢迎大家给她点赞。二、视频二——技术框架与关于未来的想象写在前面:我之前对安克创新的印象就是一个卖充电宝的公司,还有卖安防设备;但看了这期访谈,被CEO阳萌的认知震撼了,很多观点对我有启发,强烈建议看原访谈视频。1、观点——Transformer是仿生算法的阶段性实现,10年、20年后大家将不再用TA2、观点——在端到端算法的时代,不应该继续使用冯诺依曼架构。3、在存算一体(在存储单元里做计算)的芯片之上,一定会诞生一种全新的算法。