「AGIへの道」飛書ナレッジベースへ直行 →

微信聊天机器人可以训练自己的数据吗

回答

微信聊天机器人可以训练自己的数据。例如,可以使用字节旗下的 Coze AI 智能机器人工具训练公司自有的数据,让机器人对外提供客服功能,并将训练好的机器人与公司的企业微信绑定。同时,像 ChatGPT 这样的语言模型也是通过基于人类撰写的大量文本语料库(包括网页、书籍等)进行大规模训练得出的。Anthropic 的 Claude 产品在训练时遵循特定策略,在数据搜集方面,在亚马逊机器人平台上雇佣标注员扮演正常用户和恶意用户两种角色进行提问,并分别选出更有帮助和没那么有害的回答。

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

【智能体】用Coze在微信里搭建一个机器人,还能挖掘销售线索

1、训练公司自有的数据,让机器人对外提供客服功能;2、将训练好的机器人与公司的企业微信绑定,对外提供客服功能;3、进阶版:同时根据客户咨询的信息,收集用户联系方式信息形成销售线索。[heading1]二、使用工具[content]1、字节旗下的Coze AI智能机器人工具;2、需要有微信公众号订阅号或服务号的管理权;[heading1]三、功能体验[content]扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000aB站公开视频

ChatGPT 是在做什么,为什么它有效?

[title]ChatGPT是在做什么,为什么它有效?[heading2]ChatGPT的内部[heading3]ChatGPT的训练现在我们已经大致了解了ChatGPT设置完成后的工作流程。但是,它是如何配置的?那1750亿个神经元网络权重是如何确定的呢?这基本上是通过大规模的训练得出的,基于人类撰写的大量文本语料库——包括网页、书籍等。正如我们所说,即使有了这些训练数据,也不确定神经网络能否成功地生成“类似于人类”的文本。而且,为了实现这一点,需要进行详细的工程设计。但是,ChatGPT的最大惊喜和发现是它是有可能实现的。事实上,一个“仅”具有1750亿个权重的神经网络可以生成人类撰写的“合理模型”文本。在现代,有大量的人类文本以数字形式存在。公共网络上至少有几十亿人类撰写的页面,总共可能有约一万亿字的文本。如果包括非公开网页,数字可能会多至100倍。目前,已经有超过500万本数字化的书籍可供使用(尽管已出版约1亿本),另外提供了约1000亿个单词的文本。甚至还未提及来自视频等口语转换的文本。(作为个人比较,我一生中发表的文字总量少于300万字,过去30年来撰写的电子邮件总量约为1500万字,总共打出的字数可能达到5000万字——仅在过去几年里,我在直播中就已经讲了超过1000万个字。没错,我会从这些内容中训练一个机器人。)好了,既然有了所有这些数据,如何从中训练神经网络呢?基本过程与我们在前面的简单例子中讨论的一样。您提供一批示例,然后调整网络中的权重,以使网络在这些示例上产生的误差(“损失”)最小化。“反向传播”中的主要开销在于每次执行此操作时,网络中的每个权重通常都会发生微小的变化,并且需要处理大量的权重。(实际的“反向计算”通常只比前向计算复杂一个小常数因子。)

(3)ChatBot是怎么炼成的?

[title](3)ChatBot是怎么炼成的?[heading2]ChatGPT的追赶者们[heading3]ClaudeClaude是Anthropic的产品,这家公司一听就是AGI公司的范儿,”有关人类的一切“。创始团队正是OpenAI早期的核心人员,他们后来理念跟OpenAI不同而决定自立门户。Anthropic对于AGI的可解释和安全可靠性非常重视,产品化似乎并不是他们第一追求的目标,技术路线跟OpenAI相似甚至一度领先于OpenAI,但是不幸被ChatGPT抢了first blood。Anthropic训练技术上也遵循着PT-SFT-RM-PPO的四步走策略,下面重点说说跟ChatGPT不同的地方核心理念Anthropic关注的是HH(helpful and harmless)特性,即要有用,但是不能有害,这两个往往是矛盾的。他们发现如果单纯使用helpful的数据训练,排序Elo的分数(一个越高越好的指标)非常高,但是代价是极易遭到攻击,由此说明需要两种数据混合着来训练数据搜集Anthropic在亚马逊机器人平台上,雇佣标注员扮演两种角色提问模拟正常用户设置蓝队,问积极正向的问题,撰写或者编辑文档,讨论制定计划等选出更加helpful的回答允许多轮对话,open-ended模拟恶意用户设置红队做模拟攻击,问消极负面的挑衅问题选出回答中没那么harmful的回答一般是单轮对话需要注意的是

他の質問
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
微信智能客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例中通过创建 Bot 创建。侧边导航栏一直有创建 Bot 的方式,仅主页有 Coze Assistant。两者区别在于: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮您教她技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,发布流程较复杂,下面是重新注册和解绑后重新配置的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-15
coze的智能体如何接入微信?
要将 Coze 智能体接入微信,可按以下步骤操作: 1. 登录宝塔面板,在宝塔面板中可视化控制云服务器,部署 docker 容器,启动 COW 项目与微信取得关联。具体操作包括:点击“Docker”中的“项目模板”中的“添加”按钮,将编译好的内容复制进来,在容器中创建容器,选择容器编排,填入模板和名称,确定。运行成功后,点击容器,可以看到运行的是两个服务。 2. 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌命名,选择永久有效作为过期时间,指定团队空间,勾选所有权限。保存好令牌的 Token,切勿向他人泄露。 3. 获取机器人 ID:在个人空间中找到要接入微信的机器人,进入机器人编辑界面,浏览器地址栏 bot/之后的数据就是该机器人的 Bot ID。 4. 进行 API 授权:点击右上角发布,勾选 Bot as API,确定应用已成功授权 Bot as API。 5. 绑定微信:准备一个闲置的微信,点击容器,点击“wcandyaibot”后面的日志按钮,用提前预备好的微信进行扫码。手动刷新界面,点击“刷新日志”,若看到 WeChat login success,即表示微信登录成功。为确保微信实时在线,点击“日志管理”的“wcandyaibot”的“刷新日志”,若显示“wechat login seccess”则表示微信正常登录中。 6. 效果测试:把绑定的微信号拉到群里或者单独对话,训练的数据越好,对话效果越好。
2025-04-11
怎么搭建微信机器人?
以下是搭建微信机器人的步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时表示已通。 2. 如果想为这个 AI 赋予提示词,可以返回相应步骤进行更改。例如在“目录 4 里的第 17 步”或“第三章,第 7 步”,其中双引号内的 value 部分,便是设置 AI 提示词的地方。 3. 此后,进行任何更改,都需要重新打印登陆二维码。并且一个月内,不要上来就加好友、最好不要私聊聊天。 4. 报错"wxsid"是因为微信未实名,实名即可解决。 5. 如果没有手机登录,可以使用夜神模拟器模拟手机登录。 6. 重新在“文件”的【终端】里,直接输入 nohup python3 app.py&tail f nohup.out 重新扫码登录。 7. 多次重新登录后,就在宝塔“首页右上角点击重启,重启一下服务器”,清理进程。 8. 熟悉 linux 操作的话,也可以通过重启进程的方式来重启服务。 9. 如果想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 此外: 1. Link AI 提供的 100 个,合计 3500 万 GPT3.5 Token 的礼品码。可以用来实现画图、搜索、识图等功能,COW 插件里几乎都支持使用 LinkAI 平台。完成机器人搭建,机器人拉群里,领兑换码。 2. 添加微信,拉您进机器人群,先行体验。 如果您仍旧遇到问题,可以先查询社区知识库,或者加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可以加 Stuart 个人微信询问。
2025-04-11
智能微信客服
以下是零成本、零代码搭建一个智能微信客服的保姆级教程: 1. 起个好名字和给它头像 进入 Bot 主页并开始创建 Bot,网址:https://www.coze.cn/home 。 名字(Bot 名称):善良有爱专业的幼师。 头像(图标):AI 生成后,不喜欢可以重新生成,选择其中一个。 补充:创建 Bot 的方式有两种,点击创建 Bot 和 Coze Assistant。主页上包含这两种方式,示例通过创建 Bot 创建。侧边导航栏一直有创建 Bot 方式,仅主页有 Coze Assistant。两者区别为: 创建 Bot 适合使用过 Bot 且想好名称和描述的人。 Coze Assistant 适合第一次创建 Bot 的人,从说“我想创建 bot”开始,Coze 助理会引导创建,自动生成名称、头像、人设与回复逻辑、开场白文案、开场白预设问题等。 2. 教她技能 如果通过 Coze Assistant 方式创建 Bot,Coze 助理已帮教技能,可按需修改完善。 起好名字和头像后进入教技能环节,先看整理布局,找到编排、预览与调试,在编排的人设与回复逻辑教她技能: 教她技能 1:认识自己。 教她技能 2:掌握专业技能。 教她技能 3:不能做什么。 3. 让她教别人 她学会技能后,使命及目标是通过互动方式教会请教的人。 找到高级下开场白,点击展开,填写开场白文案、开场白预置问题,设置 3 个问题。 勾选用户问题建议:在 Bot 回复后,根据 Prompt 提供最多 3 条用户提问建议。 添加语音选择:让她不仅会写,还会通过语音交流。 点击“发布”,选择发布平台:Bot Store、豆包、飞书、微信客服、微信公众号(服务号)、微信公众号(订阅号)、掘金。 Bot Store:Bot 会出现在 Coze Bot 商店中,获取更多曝光和流量。 豆包:一键发布到豆包 App,随时随地对话。 飞书:在飞书中直接@Bot 对话,提高工作生产力。 微信客服:微信沟通更高效,是本次分享重点,发布较复杂,下面是重新注册和解绑后重新配置微信客服的流程。 微信公众号(服务号):针对企业,不支持个人注册,订阅号运营主体可为企业或个人。 微信公众号(订阅号):托管公众号消息,助力微信运营无间断。 掘金:在掘金社区 AI 聊天室圈子与 Bot 互动。
2025-04-10
微信机器人如何配置
微信机器人的配置步骤如下: 1. sum4all 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 sum4all 插件目录下的 config.json.template,复制并粘贴重命名为:config.json 注册并获取 sum4all key:https://pro.sum4all.site/register?aff=T6rP ,新用户注册有送免费额度,大家先使用这个进行试用,后续可改为自己的 openAI key。 把复制的 key,粘贴到 sum4all 的 config.json 文件内。(上方有功能阐述,你想要哪个,就把哪个改成 ture) 2. Apilot 配置 进入插件目录:/root/chatgptonwechat/plugins 找到 Apilot 文件下的 config.json.template,复制并粘贴重命名为:config.json 去 https://admin.alapi.cn/account/center 注册,并复制 key 把复制来的 key,粘贴进入。保存。 3. 分段对话配置替换 找到这个路径:/root/chatgptonwechat/channel/wechat,直接下载以下文件进行替换。 此外,微信的配置相对较简单,只需要主项目的 config.json 文件看看是否有"channel_type"参数,参数值为:"wx",即:"channel_type":"wx"。完成以上所有配置部分后,可以准备启动步骤了: 使用 nohup 命令在后台运行程序。 执行完启动脚本,等待 30s 左右,会看到终端有一个微信登录的二维码,微信扫码登录。 如果您想使用更多辅助功能,比如使用总结文件能力,总结网页内容能力,此时需要安装各种插件。这部分配置查看插件配置管理部分。
2025-04-10
社群机器人
以下是关于社群机器人的相关内容: 制作 Coze 社群机器人的大致流程看似步骤繁多,但由于 Coze 本身的设计和强大的社区力量,实际操作并不复杂,关键是要“迈出第一步”。在制作过程中,与社区成员设计方案时的深入讨论、在 Coze 平台上灵活组装功能时的高效畅快以及在不断调试优化中见证机器人成长,都充满乐趣。未来会有更多社区加入制作社群机器人的行列,让更多人感受 AI 智能体的魅力,那时的社群机器人不仅是助手,更是凝聚社区集体智慧的伙伴。目前的社区机器人还有不足,作者会继续优化,看其能否更好地服务社区。 如果对学习 Coze 和 AI Agent 有兴趣,可以加入免费的 AI Agent 共学群,该群组会基于 WaytoAGI 社区等高质量信息源分享相关玩法、经验和前沿资讯。可搜索微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学以便被拉入群。 此外,以综合服务的社群机器人为例,一个好的文章或复杂任务不是一次 AI 工作就能完成的,需要任务拆解,比如对用户问题做意图判断,根据意图将线路转接到正确的专属 AI 机器人那里,整个过程称为工作流,通过搭建工作流来完成复杂任务。
2025-04-15
MacBook 如何做一个 RPA 机器人
以下是在 MacBook 上制作 RPA 机器人的详细步骤: 搭建前准备: 硬件准备: MacBook(需能科学上网) 一部 iPhone 手机 主板 Arduino UNO R4 Wifi(200RMB) 舵机 9g(32RMB) 杜邦线,公对公 7 条(手残党可多备) (可选)八爪鱼支架(10RMB) (二选一)usbtypeC 转接头,或一根两头 typeC 的线 Arduino UNO R4 WIFI 开发板 MG90s/SG90 舵机 9g 云台支架 可选八爪鱼手机支架 杜邦线公对公 搭建步骤: 完成代码: 在 Github 上下载完整代码。 根据需求修改文件: 【必改】在 head.py 中找到填写主板串口的地方,改成串口地址(可通过主板写入的第 3 步里的小字或 Tools>Get Board Info 重新查询,复制 sn 号替换 usbmodem 后面的编码)。 【必改】查询 iPhone 的 ip 地址,填到 talk.py 里(iPhone 设置>无线局域网>点击当前 wifi 旁的感叹号>找到 ipv4 地址里写的 ip 地址)。 【必改】把 open ai key 填到 talk.py 里。 【可选】在 talk.py 里,可以修改: Openai 调用的 model。 system prompt(机器人的人设)。 机器人的音色。 录音的设置。 【可选】在 head.py 里,可以修改不对话后,等待多久恢复人脸追踪。 运行程序: 在 MacBook 上按下 command+space(空格)打开一个新的终端,依次输入如下代码(每一次代码运行完以后再输入下一个),全部完成后,关闭端口。 将 iPhone 的屏幕关闭时间设置为 5 分钟或永不。 打开 iPhone 的 pythonista 并复制 face.py 的代码进去,运行。注意:每一次如果需要重新运行 pythonista,请先杀后台再运行,否则会因为端口已经被占用而无法播放声音。 找到下载下来的 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”。 将 arduino R4 与 MacBook 相连,在终端中输入以下代码,运行后程序会申请一次摄像头权限,点击允许,然后出现运行失败,再运行一次即可。这个程序一旦运行,无法自然退出,建议直接拔掉 R4 的线或者终端输入 control+c 或者直接关闭终端,但多强制退出几次以后运行就会卡住需要重启或清进程。 再次在 AIinhindsightGPTEmbodimentRobot 文件夹,control+单击文件夹,选择最后一项“新建位于文件夹位置的终端端口”,在终端中输入以下代码,运行后程序会申请一次录音权限,点击允许,然后出现运行失败,再运行一次即可。如果运行中出现任何报错,将本文档,代码,报错信息给到 GPT4,让他帮助你就好~可能是有一些库没有预装。 把 talk.py 的终端放在最前面你能看到,出现 recording...的时候就可以说话了。 三个程序同时运行、iPhone 和 MacBook 在同一 wifi,iPhone 没有调静音的情况下,就可以正常对话啦。
2025-04-11
创建飞书ai机器人
创建飞书 AI 机器人的步骤如下: 1. 工作流搭建: 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录,您既可以学习如何手动连接这些节点,从而实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻。 2. 飞书机器人创建: 飞书应用建立: 在中创建自建应用。 进入应用获取 app_id 与 app_secret。 添加应用能力>开启机器人应用能力。 权限管理>消息与群组>选择需要的权限打开。 安全设置>将 comfyUI 运行的电脑 IP 加入白名单。 发布机器人以应用生效。 获取群组或用户 id: 要先把创建的机器人拉到群组中或者拉进私聊。 飞书开发平台找到发送消息的开发文档。 右侧点击获取 token。 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg 。
2025-04-11
利用飞书多维表格,做一个类似于客服机器人 可以怎么做?
利用飞书多维表格做一个类似于客服机器人,可以按照以下步骤进行: 1. 创建一个拟人化的 bot,比如起名叫青青,设定其为人设是一个可爱有趣的少女,擅长回答各种刁钻的问题。完成 BOT 捏好后点击发布。 2. 发布时配置飞书多维表格: 输出为文本时,第一步配置为文本。 配置多维表格输入表单,选择用控件的字段选择器,给字段标题随便起个名字如“question”。 在完善捷径的商家信息这里,可以选择全量发布,也可以选择仅自己可用。为了审核快一些,可以选择仅自己可用。等审核通过之后,就可以在飞书多维表格里面看到发布成功。 3. 还可以探索字段捷径的各种玩法(不含 bot),比如直接创建一个多维表格,第一列是几个成语,第二列是 AI 字段捷径生成的对成语的解释。左边输入一列,比如一列成语,右边配置 AI 字段。 此外,还有一些相关信息供您参考: “Show Me 扣子 AI 挑战赛大消费行业专场圆满落幕,探索 AI 与大消费行业的深度结合”中提到了一些相关作品,如帮助企业快速建立产品智能客服体系、ERP 高智版:扣子销售订单管理大师、亚马逊商品评论智析、AI 电商设计师等。 2024 年历史更新(归档)中包含了关于飞书多维表格字段捷径配置 COZE 的 BOT 青青的相关内容。
2025-04-08
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
可以同时接多个大模型api的聊天应用
以下是一些可以同时接多个大模型 API 的聊天应用: 1. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤 能实现打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用等功能。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。 可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型,包括文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 有多种部署方法,如本地运行、服务器运行、Docker 的方式。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 相关教程:张梦飞同学写的更适合小白的使用教程 2. DIN:全程白嫖拥有一个 AI 大模型的微信助手 搭建步骤: 搭建,用于汇聚整合多种大模型接口,并可白嫖大模型接口。 搭建,这是个知识库问答系统,可将知识文件放入,并接入大模型作为分析知识库的大脑来回答问题。若不想接入微信,其自身有问答界面。 搭建接入微信,配置 FastGpt 将知识库问答系统接入微信,建议先用小号以防封禁风险。 拓展功能:搭建完后想拓展 Cow 的功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画。 3. LLM 开源中文大语言模型及数据集集合中的外部挂件应用 wenda: 地址: 简介:一个 LLM 调用平台。为小模型外挂知识库查找和设计自动执行动作,实现不亚于大模型的生成能力。 JittorLLMs: 地址: 简介:计图大模型推理库:笔记本没有显卡也能跑大模型,具有成本低,支持广,可移植,速度快等优势。 WebCPM 地址: 简介:一个支持可交互网页搜索的中文大模型。 GPT Academic: 地址: 简介:为 GPT/GLM 提供图形交互界面,特别优化论文阅读润色体验,支持并行问询多种 LLM 模型,兼容复旦 MOSS, llama, rwkv, 盘古等。 ChatALL: 地址: 简介:ChatALL(中文名:齐叨)可以把一条指令同时发给多个 AI,可以帮助用户发现最好的回答。
2025-03-17
微信聊天记录整理助手
以下是关于微信群聊总结 AI 助手(JS and Electron ver)的详细介绍: 脚本版本运行: 会弹出二维码,使用微信扫码登录,登录成功后程序持续抓取群聊记录,保存在本地文件中,位置在 data/日期文件夹/群名.txt,不会上传到第三方。 手动运行总结程序,在每天结束时对某个群的内容进行总结,命令为:npm run summarize./data/20230823/xxx.txt 总结语音生成的配置。 项目介绍: 这是基于微信机器人的微信群聊总结助手,能自动收集群聊记录并用 AI 总结发送到指定群聊。 是较简单能实现完整功能的项目,用 JS 简单封装。 每次执行 summarize 命令会生成三个总结文件。 提示:使用本项目登录微信可能存在封号风险,请慎重使用并遵守相关平台规则。 下载与支持: 本项目由免费白嫖 GPT 的智囊 AI技术支持。 自己跑不起来但需要群聊总结的同学,可加机器人微信号:aoao_eth,把机器人拉进群里。 新版本:桌面应用: 可使用桌面版,一键监控、总结、发送,也可用脚本版手动运行监控和总结。 下载后直接打开配置 app key 即可运行监控和总结,一键总结,一键发送到群内。 如需要 windows 版本,可自己构建或者直接代码运行,代码在 app 文件夹中,欢迎构建成功的同学提供 windows 安装包。 截图展示的功能: 每日群聊监控和数据统计(界面实时更新) 一键总结,一键查看总结结果,一键发送到群聊 聊天记录实时查看,直接发送内容到群聊 随时更新的配置,可配置截取的文本长度和结尾词等 机器人状态监控,账号切换 正常运行界面,点击对话可看到实时对话和记录,同时可直接输入内容对话 微信登录界面
2025-03-12
微信聊天机器人
以下是关于搭建 AI 微信聊天机器人的相关内容: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 开始搭建,配置腾讯云轻量应用服务器,配置部署 COW 组件。 在复制的 dockercompose.yml 文件中修改具体配置来串联微信号和已创建好的 AI 机器人。配置参数参考官方来源:https://docs.linkai.tech/cow/quickstart/config 。编排模板中,名称的全大写描述需对应,如 open_ai_api_key 对应 OPEN_AI_API_KEY 。私聊或群聊时,最好加上前缀触发机器人回复,如配置的对应配置参数 SINGLE_CHAT_PREFIX,群聊中对应参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 2. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: 微信有多种功能,个人微信/微信群目前 Coze AI 平台不支持直接对接,微信公众号、微信服务号、微信客服支持与 Coze AI 平台对接。 Coze 的国内版已正式发布 API 接口功能,可直接对接个人微信和微信群。 3. 熊猫大侠:基于 COW 框架的 ChatBot 实现步骤: COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进微信里的实现方案。 有更适合小白的使用教程:【保姆级】一步一图,手把手教你把 AI 接入微信副本 。 实现内容包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等)、常用开源插件的安装应用。 正式开始前需知道: ChatBot 相较于在各大模型网页端使用区别:本实现思路需接入大模型 API(API 单独付费)。 风险与注意事项:微信端因非常规使用有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据注意脱敏。 支持多平台接入:微信、企业微信、公众号、飞书、钉钉等。 支持多模型选择:GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。 支持多消息类型:能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。 支持多部署方法:本地运行、服务器运行、Docker 的方式。
2025-03-06
用ai帮助聊天
以下是关于用 AI 帮助聊天的相关内容: Cursor 官方: Chat 聊天:允许您与看到您的代码库的 AI 交谈。聊天室始终可以看到您当前的文件和光标,您可以向它询问诸如“这里有 bug 吗”等问题。您可以使用⌘+Shift+L 或“@”将特定代码块添加到上下文中,也可以使用⌘+Enter 与整个代码库聊天。 代码库答案:使用@Codebase 或⌘Enter 询问有关您的代码库的问题,Cursor 会搜索您的代码库以查找与您的查询相关的代码。 引用您的代码:带有@符号的参考代码可用作 AI 的上下文,只需键入@即可查看文件夹中所有文件和代码符号的列表。 使用图像:点击聊天下方的图片按钮,或将图片拖到输入框中,将视觉上下文包含在聊天中。 学习笔记:Generative AI for Everyone 吴恩达: 阅读方面:可以让 LLM 检查文本错误、总结长句。客服人员针对每一位用户传递大量信息时,可内置 LLM 快速总结信息提供给决策管理层,使用 LLM 进行语义分析,将邮箱、客户留言等外部信息传递给相关部门。构建处理信息的 LLM 模型时,要设置好提示词,持续优化。 聊天方面:聊天机器人可用于做旅游计划、职业咨询、做饭建议等,不仅能生成文本,还能产生进一步行动,如处理文本后发送订单信息等。建立聊天机器人的流程为:开始于内部聊天机器人,确保良好表现并避免问题;设置人为参与链路;确保安全后,让机器人对接用户。 大语言模型行与不行:能做类似于应届生能做的事;不可做的包括时间限制(如 GPT3 只有 2022 年 1 月前的数据)、会出现幻觉、接受有限的 prompt、输出有限制、不可以很好处理结构化数据、可能输出有害的信息。 @Chat:此功能目前仅适用于 Cmd K。您可以在 Cmd K 中使用@Chat 将当前聊天消息添加为上下文,当您与希望应用于编辑或生成代码的 AI 进行对话时很有用。
2025-03-03
帮助聊天的ai
以下是关于帮助聊天的 AI 的相关信息: Cursor: Chat 聊天:允许您与看到您的代码库的 AI 交谈。聊天室始终可以看到您当前的文件和光标,您可以向它询问诸如“这里有 bug 吗”等问题。您可以使用⌘+Shift+L 或“@”将特定代码块添加到上下文中,使用⌘+Enter 与整个代码库聊天。 Codebase Answers 代码库答案:使用@Codebase 或⌘Enter 询问有关您的代码库的问题,Cursor 会搜索您的代码库以查找与您的查询相关的代码。 Reference your Code 引用您的代码:带有@符号的参考代码,用作 AI 的上下文。只需键入@即可查看文件夹中所有文件和代码符号的列表。 Use Images 使用图像:点击聊天下方的图片按钮,或将图片拖到输入框中,将视觉上下文包含在聊天中。 Claude: Claude AI 是一款由 Anthropic 公司开发的 AI 助手,是基于自然语言处理技术和人工智能算法的聊天机器人。它能使用自然语言理解技术理解人类语言,并使用自然语言生成技术进行回答和梳理,以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名,利用最先进的机器学习技术、自然语言处理和深度学习算法,为各种应用提供支持,包括但不限于数据分析、自动化和个性化辅助。 注册步骤: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码完成邮箱验证。 若在注册过程中遇到需要海外手机号接收验证码的问题,可能的解决方案有: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册您的 Claude 账号。 3. 若有海外朋友,可请他们帮忙接收验证码,并将验证码告知您。 完成注册后,若希望升级到 Claude Pro 版本以获取更强大功能和更高的 API 调用限额,需填写支付信息并选择合适的订阅计划。需注意,订阅 Claude Pro 可能需要使用海外支付方式。Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。若在注册过程中遇到问题,可参考其他用户分享的详细注册教程和解决策略。
2025-03-03
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09