直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

qwen大语言模型有视觉模式吗?

回答

Qwen 大语言模型具有视觉模式。以下是相关信息:

  • 有博主称 Qwen-VL 已迁移到 ComfyUI 中,它支持本地图像、上下文窗口多轮对话,支持 PLUS 和 MAX 双视觉模型,支持百万像素、任意规格图像,具有超强细节和文字识别能力,在开源领域表现出色,中文能力突出,目前 API 免费开放。
  • 关于部署 Qwen 大语言模型,如在 Windows 电脑上,可点击 win+R,输入 cmd 回车;在 Mac 电脑上,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”选择“终端”应用程序,然后复制相关命令行粘贴回车进行下载。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

爆肝博主 ZHO-绘画

[title]爆肝博主ZHO[heading1]更新记录:[heading2]1月30日Qwen-VL[15【击败GPT4V?我把Qwen-VL迁移到ComfyUI中了!- -Zho- |小红书-你的生活指南】? kQBVB2cSgsCwXcT ?](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)[http://xhslink.com/NhC33A](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)【Zho】开源最强视觉模型?Qwen-VL in ComfyUI已上线!1⃣支持本地图像、上下文窗口多轮对话2⃣支持PLUS & MAX双视觉模型3⃣支持百万像素、任意规格图像4⃣超强细节、文字识别能力对比下来应该是开源领域最好的视觉模型了,中文能力突出,目前API免费开放!

爆肝博主 ZHO

[title]爆肝博主ZHO[heading1]更新记录:[heading2]1月30日Qwen-VL[15【击败GPT4V?我把Qwen-VL迁移到ComfyUI中了!- -Zho- |小红书-你的生活指南】? kQBVB2cSgsCwXcT ?](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)[http://xhslink.com/NhC33A](https://www.xiaohongshu.com/explore/65b8fbe5000000002c0373d7?app_platform=ios&app_version=8.23.2&author_share=1&share_from_user_hidden=true&type=video&xhsshare=WeixinSession&appuid=63f11530000000001001e0c8&apptime=1706622055&wechatWid=803c253b00ed4224d3a2adcd80b46ed7&wechatOrigin=menu)【Zho】开源最强视觉模型?Qwen-VL in ComfyUI已上线!1⃣支持本地图像、上下文窗口多轮对话2⃣支持PLUS & MAX双视觉模型3⃣支持百万像素、任意规格图像4⃣超强细节、文字识别能力对比下来应该是开源领域最好的视觉模型了,中文能力突出,目前API免费开放!

张梦飞:【全网最细】从LLM大语言模型、知识库到微信机器人的全本地部署教程

一、下载并安装Ollama1、点击进入,根据你的电脑系统,下载Ollama:https://ollama.com/download2、下载完成后,双击打开,点击“Install”3、安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成http://127.0.0.1:11434/二、下载qwen2:0.5b模型(0.5b是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)1、如果你是windows电脑,点击win+R输入cmd,点击回车如果你是Mac电脑,按下Command(⌘)+ Space键打开Spotlight搜索。输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。2、复制以下命令行,粘贴进入,点击回车:3、回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了)4、下载完成后你会发现,大模型已经在本地运行了。输入文本即可进行对话。

其他人在问
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
qwen
Qwen 2 已开源,具有以下特点和优势: 1. 提供 5 种尺寸的预训练和指令调整模型,包括 Qwen20.5B、Qwen21.5B、Qwen27B、Qwen257BA14B 和 Qwen272B。 2. 除英语和中文外,还接受过另外 27 种语言的数据训练。 3. 在大量基准评估中表现出最先进的性能,代码和数学性能显著提高,全面超越 llama3。 4. 增大了上下文长度支持,最高达到 128K tokens(Qwen272BInstruct),72B 和 7B 可处理 128k 上下文,57BA14B 可处理 64k 上下文,0.5B 和 1.5B 可处理 32k 上下文。 5. 相比 2 月推出的通义千问 Qwen1.5,实现了整体性能的代际飞跃。在权威模型测评榜单 OpenCompass 中,此前开源的 Qwen1.5110B 已领先于文心 4.0 等一众中国闭源模型,Qwen272B 整体性能相比 Qwen1.5110B 又取得了大幅提升。在 MMLU、GPQA、HumanEval、GSM8K、BBH、MTBench、Arena Hard、LiveCodeBench 等国际权威测评中,Qwen272B 获十几项世界冠军,超过美国的 Llama3。 Qwen2 系列模型的性能突破具有重要意义: 1. 在中国大模型领域,开源模型显示出超越最强闭源模型的势头。 2. 中国的开源大模型,从性能到生态都具备了媲美美国 Llama3 的能力。 通义千问大模型的持续优化和进步,主要依赖强大的大模型研发能力、领先的基础设施能力以及开源社区的充分支持。阿里云是全球唯一一家积极研发先进 AI 模型并且全方位开源的云计算厂商。 体验 Qwen2 系列模型的途径: 1. 已上线魔搭社区 ModelScope 和阿里云百炼平台,开发者可在魔搭社区体验、下载模型,或通过阿里云百炼平台调用模型 API。 2. Qwen272binstruct 模型已经上线中国大语言模型评测竞技场 Compass Arena,所有人都可以登录体验 Qwen2 的性能,或者选择 Qwen2 模型与其他大模型进行对比测评。测评地址:。Compass Arena 是由上海人工智能实验室和魔搭社区联合推出的大模型测评平台,集齐了国内主流的 20 多款大模型。 此外,玉宝搞过一个 LLM 的在线评估,里面可以看到国内各个闭源大模型的 HUMANEVAL 测评得分,可以和 QWEN2 对比,网址为:https://www.llmrank.cn/ 。除了美国 Llama 开源生态之外,通义千问已成为全球开发者的另一主流选项。
2025-03-10
qwen.chat
以下是关于 Qwen 的相关信息: 2023 年度中文大模型基准测评报告中提到了 Qwen 的相关模型,如 Qwen14BChat、Qwen72BChat。 1 月 28 日的 Xiaohu.AI 日报中,大年三十发布了 Qwen2.5Max 模型,这是通义千问推出的大型专家模型(MoE),通过 SFT 和 RLHF 策略后训练,性能与顶尖模型竞争,在多个基准测试中超越了 DeepSeek V3,引发了 AI 社区对大规模专家模型的高度关注。相关链接包括: Blog: Qwen Chat: (选择 Qwen2.5Max 模型) API: HF Demo: 1 月 28 日的 Xiaohu.AI 日报中还提到阿里云发布了 Qwen2.5VL:新一代视觉语言模型。
2025-02-21
Qwen 2.5 max 如何访问
Qwen 2.5 Max 可以通过以下方式访问: 1. 目前,Qwen 2.5 Max 已在阿里云百炼平台上架,模型名称为 qwenmax20250125,企业和开发者都可通过阿里云百炼调用新模型 API。 2. 同时,也可以在全新的 Qwen Chat(https://chat.qwenlm.ai/)平台上使用 Qwen 2.5 Max,直接与模型对话,或者使用 artifacts、搜索等功能。 此外,您还可以通过以下链接获取更多相关信息:
2025-02-13
我想利用现有的20万条政务相关数据,基于qwen2.5 70B大模型构建自己的政务服务大模型,该如何做,请给出具体实现流程,谢谢!
以下是基于 qwen2.5 70B 大模型利用 20 万条政务相关数据构建政务服务大模型的大致流程: 1. 数据准备:对 20 万条政务相关数据进行清洗、预处理和标注,使其适合模型学习。 2. 模型选择与下载:选择 qwen2.5 70B 大模型,并按照相关说明进行下载。 3. 本地部署: 启动 OpenAI 兼容的 API 服务,根据硬件配置设置相关参数,如 tensorparallelsize(设置使用的 GPU 数量)、maxmodellen(定义最大输入序列长度)、maxnumbatchedtokens(设置 Chunked Prefill 的块大小)、maxnumseqs(限制并发处理的序列数量)。 遇到问题可参考相关内容。 4. 与模型交互:可以使用 Curl 或 Python 等方法与部署的模型进行交互,对于更高级的使用方式,可以探索如之类的框架。 5. 模型训练:模型训练是一个复杂且计算量极大的过程,需要大量的计算资源和时间。 需要注意的是,构建大模型是一个复杂的任务,需要具备一定的技术知识和经验。在实际操作中,可能会遇到各种问题,需要不断调试和优化。
2025-02-06
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
哪些AI可以支持对镜头的视觉理解
以下 AI 可以支持对镜头的视觉理解: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. OpenAI 的 GPT4:在 12 月发布的更新中正式上架了“视频理解”功能,可以和用户就便签内容进行讨论。 3. 基于豆包视觉理解模型实现的具有视频通话功能的应用:能够对摄像头传输的实时画面进行分析,精准理解画面中的关键信息,包括图表论文人物表情、动作细节、场景环境等。同时支持高清流畅的视频通话,实现和大模型面对面的即时交流体验。
2025-04-09
如何用AI 驱动的产品营销创新,从内容创作到视觉呈现的全方位变革?
以下是关于如何用 AI 驱动产品营销创新,从内容创作到视觉呈现的全方位变革的一些方法和案例: 一、内容创作方面 1. 利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,以获取关键信息,为营销内容创作提供方向。 2. 借助 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 二、视觉呈现方面 1. 通过 AI 生成图像或素材,再结合平面合成及修正,确保符合品牌形象,精准表达营销活动主题,如淘宝天猫大促视觉的案例。 2. 对于需要定制化真人模特实景素材的主题活动,利用 AI 将策划、搭建、拍摄、设计融为一个闭环流程,完成页面所有素材的生产和输出,例如七夕主题活动页面。 3. 在 UI 设计场景中,采用 AI 能力快速定制多种用户需要的视觉效果,如通过 SD 中 controlnet 的有效控制生成指定范围内的 ICON、界面皮肤等内容。 三、在阿里巴巴营销中的应用 1. 关键词优化:利用 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 2. 产品页面设计:借助 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 3. 图像识别和优化:使用 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 4. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 5. 客户反馈分析:通过 AI 分析客户评价和反馈,优化产品和服务。 6. 个性化推荐:利用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 7. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 8. 营销活动分析:借助 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 9. 库存管理:依靠 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 10. 支付和交易优化:利用 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 11. 社交媒体营销:通过 AI 在社交媒体上找到目标客户群体,进行精准营销提高品牌知名度。 12. 直播和视频营销:使用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 四、大型视觉模型 Sora 的机遇 1. 对于学术界,OpenAI 推出 Sora 标志着战略转变,鼓励更广泛的 AI 社区深入探索文本到视频模型,利用扩散和变换器技术。以原生大小训练 Sora 的创新方法为学术界提供了灵感,强调使用未修改数据集的好处,开辟了创建更高级生成模型的新路径。 2. 对于行业,Sora 目前的能力预示着视频模拟技术进步的道路,突出了在物理和数字领域内增强现实感的潜力。公司可以利用 Sora 生产适应市场变化的广告视频,并创建定制化的营销内容,降低成本,增强吸引力和效果,彻底改变品牌与受众互动的方式。
2025-03-24
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
用what,why,how,will,next,作为五个力量,用熵增熵减作为二进制,组成的底层语言用其中的next作为自主学习探索动力的自进化AI,潜力怎么样?
用 what、why、how、will、next 作为五个力量,以熵增熵减作为二进制,组成底层语言,并以其中的 next 作为自主学习探索动力的自进化 AI 具有一定的潜力,但也面临一些挑战。 从潜力方面来看,这种设计可能有助于 AI 系统更有针对性地进行自主学习和探索。例如,what 可以帮助明确要学习和理解的对象或概念;why 有助于挖掘背后的原因和逻辑,促进更深入的理解;how 能够指导实现目标的方法和步骤;will 可以对未来的发展进行预测和规划。而将 next 作为自主学习探索的动力,有可能推动 AI 不断开拓新的知识领域。 然而,也存在一些挑战。首先,熵增熵减作为二进制的基础,其在实际应用中的有效性和稳定性需要进一步验证和优化。其次,如何准确地定义和运用这五个力量,以及它们之间的协同关系,需要精细的设计和调试。再者,将这种复杂的底层语言转化为实际的算法和模型实现,具有较高的技术难度。 总之,这种自进化 AI 的概念具有创新性和潜力,但需要在理论和实践上进行深入的研究和探索,以充分发挥其优势并克服可能的问题。
2025-04-12
扣子如何改变回复的语言风格
要改变回复的语言风格,可以参考以下方法: 1. 对于风格类的 Bot,提示词中的 Fewshot 对输出风格影响较大,可先找预期相关人的风格示例并修改。 2. 在 Examples 里使用特定开头的词,如“Fword”,开头字符会显著影响输出内容。 3. 加星号的部分代表加粗,根据自注意力机制可提升提示词中的关键词效果。 4. 能力方面可使用自带的 Bing 搜索和图片识别,根据需求选择,如避免 Webpilot 以免语气变温和。 5. 可根据需求决定是否加入绘画功能。 6. 防护词可参考,但没有完美的防御提示词。 7. 回复风格可来自自己的群聊机器人的风格嫁接。 8. 最后加入一些小 Tips 进一步提升个性化效果。 在场景方面,可以问 Bot 对内容的看法,或让其帮忙分析事情以获得更接地气的表述。 另外,编写提示时: 简单任务场景: 设定人物,描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程,约定 Bot 在不同场景下的回答方式,强调调用工具以保证回复准确性,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答。 复杂任务场景:推荐使用结构化格式编写提示,扣子支持将 Bot 的提示自动优化成结构化内容,可直接使用或修改。
2025-04-09
你都融合了哪些大语言模型?
以下是一些融合的大语言模型: 1. LuotuoChineseLLM: 地址: 简介:囊括一系列中文大语言模型开源项目,包含基于已有开源模型(ChatGLM、MOSS、LLaMA)进行二次微调的语言模型、指令微调数据集等。 2. Linly: 地址: 简介:提供中文对话模型 LinlyChatFlow、中文基础模型 LinlyChineseLLaMA 及其训练数据。中文基础模型以 LLaMA 为底座,利用中文和中英平行增量预训练。项目汇总了目前公开的多语言指令数据,对中文模型进行了大规模指令跟随训练,实现了 LinlyChatFlow 对话模型。 3. ChatYuan: 地址: 简介:元语智能发布的一系列支持中英双语的功能型对话语言大模型,在微调数据、人类反馈强化学习、思维链等方面进行了优化。 4. ChatRWKV: 地址: 简介:开源了一系列基于 RWKV 架构的 Chat 模型(包括英文和中文),发布了包括 Raven,NovelChnEng,NovelCh 与 NovelChnEngChnPro 等模型,可以直接闲聊及进行诗歌、小说等创作,包括 7B 和 14B 等规模的模型。 此外,还有以下相关信息: 1. 本地部署资讯问答机器人: Ollama 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,可用于不同应用场景。 Ollama 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 Ollama 提供模型库,用户可从中下载不同模型,有不同参数和大小以满足需求和硬件条件,可通过 https://ollama.com/library 查找。 用户可通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。 Ollama 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 Ollama 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 2. AIGC 落地应用大全中的案例: Poe(强烈推荐): 推荐指数:????? 由 Quora 开发,有 APP 版本,支持跨端使用。 集成了 Chat GPT、GPT4、Claude+、Claude、Dragonfly 等模型,同时支持用户自建 Chatbot。 不同语言模型回复效果有差异,适合需要调用多种大语言模型的用户。 Dragonfly 擅长给出较短回答,并擅长在输入中给出示例时遵循指示。 Claude 更擅长创造性回复,配合 Poe 中的提问引导,非常适合在查阅资料时使用,有时能够给出超越直接使用 Chat GPT 时的体验(但和 Chat GPT 一样,Claude 也时常会给出一些错误回复,一些问题可在两个模型中都问一遍提升信息准确性)。 此外支持分享用户和模型的对话内容。但 GPT4、Claude+产品需要付费订阅使用。 访问地址: Poe 中的提问引导真的能够启发到用户。 支持 Explore Chatbot,但丰富度不如后续要介绍的 Character。 midjourney prompt 扩写 Chatbot 能力很惊人。
2025-04-08
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
大语言模型能力排行榜
以下是一些大语言模型能力排行榜的相关信息: Open LLM Leaderboard: 地址: 简介:由HuggingFace组织的一个LLM评测榜单,目前已评估了较多主流的开源LLM模型。评估主要包括AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA四个数据集上的表现,主要以英文为主。 chinesellmbenchmark: 地址: 简介:中文大模型能力评测榜单,覆盖百度文心一言、chatgpt、阿里通义千问、讯飞星火、belle/chatglm6b等开源大模型,多维度能力评测。不仅提供能力评分排行榜,也提供所有模型的原始输出结果。 聊天机器人竞技场:由伯克利的一个团队管理,根据ELO评级对不同的语言模型进行排名,计算ELO的方式与国际象棋中的计算方式非常相似。 智源评测:豆包模型在其中表现出色,荣获大语言模型第一,视觉理解第二、文生图第二、文生视频第二,在匿名投票竞技场中排名第二,仅次于OpenAI。 地址:
2025-03-31
自然语言转换为sql
以下是关于自然语言转换为 SQL 的相关信息: DuckDBNSQL7B 模型能够将自然语言转换成 SQL 代码,使非专业用户能轻松与数据库交互,它基于大量真实和合成的 DuckDB SQL 查询训练。相关链接:https://github.com/NumbersStationAI/DuckDBNSQL 、https://x.com/xiaohuggg/status/1751081213459415164?s=20 Claude 官方提示词中有将日常语言变成 SQL 查询语句的相关内容。 以下是一些推荐的 text2sql 相关的 AI 工具及其链接: Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/ EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sqltotext/ SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/ SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/ SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/ SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/ Talktotables:翻译和查询数据库。链接:https://talktotables.com/ 此外,还有几个知名的 text2sql 项目,如 SQLNet(使用深度学习方法解决 text2sql 任务的项目)、Seq2SQL(将自然语言转换为 SQL 查询的序列到序列模型)、Spider(一个大规模的 text2sql 数据集及其相关的挑战)
2025-03-31