Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成式人工智能在义务教育阶段的应用

Answer

生成式人工智能在义务教育阶段的应用较为广泛,以下为您详细介绍:

  • 教学方面:
    • 自适应学习:可根据学生的学习情况调整教学进度和内容。
    • 智慧课程:例如清华的相关探索。
    • AI 助教:能够精准回答学生问题,协助教师工作。
    • 为教师提供数字资源。
  • 教育的不同时代特点:
    • 口传时代:通过口诀、歌谣、神话故事等在生活场景、部落仪式中,以口耳相传、身体力行示范等方式传授生存技能和传承部落文化。
    • 手抄时代:借助私塾、官学、书院等,通过手抄本,以背诵领会、注疏评点等方式掌握典籍知识。
    • 印刷时代:在学校、课堂、图书馆等场所,利用印刷书籍,通过讲授说理、考试评价等方式进行启蒙教育和专业教育。
    • 电子媒体时代:在课堂、演播室等,通过广播电视教材、函授讲义等,开展基础教育、职业教育等。
    • 数字媒体时代:利用互联网等进行教学。
  • 技术相关:
    • API 方式比网页版 ChatGPT 可控性更高,可控制候选词汇数量等。
    • 预训练内容包括编程语言、维基百科、新闻常识、网络社区、各类书籍等,但不包括期刊论文数据库。
    • Transformer 是一种机器学习模型,可并行计算、压缩知识。
    • 随着大语言模型规模增大,会展现出如推理、跨任务泛化等复杂能力。
  • 高等教育领域的影响:
    • 生成式人工智能对高等教育的影响大于基础教育,因其可能出现“幻觉”,成人更具判断能力。
    • 典型应用场景包括让学生分析整理人工智能生成的答案以训练批判性思维,或让其扮演辩论对手以建立全面认识。
    • 可能改变学校教育培养目标,如减少对事实性知识的学习,更注重方法论等元认知策略。但过度依赖机器可能带来人类被自然淘汰的风险,高等教育需关注在科技进步中保持和发展人类智慧。

需要注意的是,目前生成式人工智能在义务教育阶段的应用仍需谨慎,充分考虑其可能带来的影响,并合理引导学生正确使用。

Content generated by AI large model, please carefully verify (powered by aily)

References

张翼然:用AI为教师减负(3H).pdf

的老师亚里士多德所拥有的。如果亚历山大在某个概念上遇到困难,我可以想象亚里士多德会放慢速度帮他理解……目标是‘掌握学习’。”自适应学习智慧课程清华的探索AI助教如何精准回答学⽣问题AI如何协助教师教师提供数字资源时代技术特征教育目标教学内容教学场景教材与教法教育思想教育组织形态口传时代语言的产生与运用传授生存技能传承部落文化口诀、歌谣、神话故事、生活技能生活场景部落仪式口耳相传身体力行示范耳濡目染言传身教家族部落手抄时代文字的产生书写工具与材料的改进掌握典籍知识培养识字写字能力经学典籍礼仪、历史私塾官学书院手抄本背诵领会注疏评点学而优则仕诵读传承家塾、私学官学、书院印刷时代雕版印刷活字印刷启蒙教育专业教育科举考试四书五经史地文学格物致知学校课堂图书馆印刷书籍、讲授说理考试评价读书明理学以致用考试选拔国民教育学校系统科举制度电子媒体广播电视录音录像基础教育职业教育成人教育多学科知识实用技能课堂演播室函授远程教育广播电视教材函授讲义程序教学自学辅导因材施教终身学习教育现代化正规教育、业余教育函授教育广播电视大学数字媒体互联网

张翼然:用AI为教师减负(3H).pdf

做文章摘要,请调低0-0.2,创意写作,可以尝试0.6-0.8,不建议更高,会胡说八道ChatGPT网页版不可调,因此:API方式比直接用网页版ChatGPT可控性更高你可以明确地控制候选词汇的数量,确保模型不会生成概率非常低的词,适合有明确结构要求的任务。top-p可以自适应地选择词汇数量,因此比top-k更灵活,尤其在生成多样性和连贯性之间提供了更好的平衡。Pre-Training预训练内容包括:编程语言、维基百科、新闻常识、网络社区、浪漫、科幻、悬疑、恐怖等书籍、(让AI生成语言更像人类)由于版权和费用,训练内容不包括期刊论文数据库世界模型Generative:涌现人类绘画能力随年龄增长的“跳跃”随着大语言模型规模的增大,模型能够学习到一些难以预期的模式和规律,并开始展现出一些原本未设计或训练中未显现的能力:如推理、跨任务的泛化等复杂行为。这些能力是系统复杂性增加的自然结果,无法通过简单的个体组件推导出,是模型生成能力的一种非线性提升。Transformer一种机器学习模型并行计算、一目十行抓重点、压缩知识如果你能够高效地压缩信息,就意味着你在提取知识;否则,你无法实现有效的压缩。

北京大学教育学院教授汪琼:数字化转型建设要从问题出发

汪琼:2023年最热的人工智能技术是大语言模型。生成式人工智能对于高等教育的影响要大于基础教育,因为现在的生成式人工智能还会出现“幻觉”,对其提供的结果,成人更有判断的能力。目前全球不少高校已经就生成式人工智能如何用于高校教学和科研提供了指南,介绍了一些典型应用场景:比如,让学生分析整理人工智能生成的多个答案,训练学生的批判性思维;或者让人工智能扮演辩论对手,通过辩论,建立对某个知识或理论更为全面的认识。有人提出:人工智能的发展可能会改变学校教育的培养目标。比如,也许学生不需要再去学习和记忆事实性知识了,学校更多的是教学生方法论等元认知策略。如果真是如此,人类整体是会进化还是会退化,还很难说。之前有研究发现,长期上网会影响我们的阅读习惯,而且人的大脑成分也真的发生了改变。未来如果我们过于依赖机器,人类会不会因此被自然淘汰,也是需要警惕的。高等教育承担着传承文明、发现新知、服务社会的重任,人工智能技术会给教学科研带来诸多便利,但也需要关注如何在未来科技进步中保持和发展人类的智慧。在线学习

Others are asking
浅谈“生成式人工智能在中职实训课的应用”
生成式人工智能在中职实训课的应用: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,所生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如: 文档摘要:将长篇文章或报告总结为简短、精准的摘要。 信息提取:从大量数据中识别并提取关键信息。 代码生成:根据用户的描述自动编写代码。 营销活动创建:生成广告文案、设计图像等。 虚拟协助:例如智能聊天机器人、虚拟客服等。 呼叫中心机器人:能够处理客户的电话请求。 生成式人工智能的工作方式如下: 1. 训练阶段:通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。 2. 应用阶段:基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Google Cloud 提供了相关工具,如 Vertex AI 是端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型;Generative AI Studio 允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少;Model Garden 是一个平台,可以让用户发现 Google 的基础和第三方开源模型,并与之交互,它提供了一组 MLOps 工具,用于自动化机器学习管道。 在教育领域,从 AI 助教到智慧学伴的应用探索中,以“移动教学与促动”课程实习周为例,让教育学专业的学生了解和尝试运用教育 APP、二维码、教育游戏等技术方式开展移动教学。课程实习需要在 5 天内让非技术背景的学生分组设计课程并展示,由于学生众多,教师难以给予个性化指导,而 AI 在一定程度上补足了学生缺乏的经验。
2025-03-31
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
生成式AI的教育重构价值
生成式 AI 在教育领域具有重要的重构价值,主要体现在以下几个方面: 1. 为教师减负:通过复杂的算法、模型和规则,从大规模数据集中学习,创造新的原创内容,帮助教师减轻工作负担。 2. 创新教学方式:例如让历史人物亲自授课,知识获取不再受时空限制,提高教育效率和质量,增强学生学习兴趣。 3. 个性化教育:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,满足学生学习需求,提高学习成果,缓解教育资源不平等问题。 4. 角色多样化:授课教师、游戏玩家、情感伴侣等服务都可以被 AI 重构。 5. 促进学生成长:人工智能生成的虚拟角色可以作为数字陪伴,给予孩子社会奖励,促进其成长和提高学习成绩。
2025-03-22
Stable Diffusion、MidJourney、DALL·E 这些生成式AI工具有什么区别
Stable Diffusion、Midjourney 和 DALL·E 这三个生成式 AI 工具主要有以下区别: 1. 开源性:Stable Diffusion 是开源的,用户可以在任何高端计算机上运行。 2. 学习曲线:Midjourney 的学习曲线较低,只需键入特定的提示就能得到较好的结果。 3. 图像质量:Midjourney 被认为是 2023 年中期图像质量最好的系统。 4. 应用场景:Stable Diffusion 特别适合将 AI 与来自其他源的图像结合;Adobe Firefly 内置在各种 Adobe 产品中,但在质量方面落后于 DALL·E 和 Midjourney。 5. 训练数据:这些工具都是使用大量的内容数据集进行训练的,例如 Stable Diffusion 是在从网络上抓取的超过 50 亿的图像/标题对上进行训练的。 6. 所属公司:DALL·E 来自 OpenAI。 在使用方面: 1. Stable Diffusion 开始使用需要付出努力,因为要学会正确制作提示,但一旦掌握,能产生很好的结果。 2. DALL·E 已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠,但图像质量比 Midjourney 差。 3. Midjourney 需要 Discord,使用时需键入特定格式的提示。
2025-03-20
生成式人工智能的提示词工程
生成式人工智能的提示词工程是一门新兴学科,在生成式 AI 模型中具有重要作用。 提示词是用户与模型沟通愿望的文本界面,适用于图像生成模型(如 DALLE3、Midjourney)和语言模型(如 GPT4、Gemini)等。它可以是简单的问题,也可以是复杂的任务,包括指令、问题、输入数据和示例,以引导 AI 的响应。 提示词工程的核心是制作能实现特定目标的最佳提示词,这不仅要指导模型,还需深刻理解模型的能力和局限性及所处上下文。例如,在图像生成模型中是对期望图像的详细描述,在语言模型中可能是复杂查询。 提示词工程不仅是构建提示词,还需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,可能包括创建可根据数据集或上下文程序化修改的模板。 此外,提示词工程是迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。该领域发展迅速,有潜力改变机器学习的某些方面。 在商业和社会中,提示词工程师是被炒作的职位,实际可能承担了机器学习工程师的部分职责。提示词工程是一切生成式 AI 的基础,不管用于学习、写作、绘画、编程还是玩音乐等。 在使用提示词时,要记住几个基本关键点: 1. 角色/身份:告诉 AI 它需要扮演的身份,提升其“职业素养”。 2. 目标/任务以及背景:所有对话都有目的性,要交代目标背后的逻辑,包括为什么要实现目标、希望达到的结果等。
2025-03-19
生成式AI
生成式 AI(Generative AI)是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。 AIGC(AI generated content)意为人工智能生成内容,又称为生成式 AI。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。能进行 AIGC 的产品项目和媒介很多,包括语言文字类(如 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等)、语音声音类(如 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等)、图片美术类(如早期的 GEN、去年大热的扩散模型带火的 Midjourney、先驱者谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等)。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管 AIGC 行业。 Gen AI/Generative AI 是“生成式人工智能”正式称呼,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 在 2022 年宣发时,OpenAI 称其是一种模型,但在官网的帮助页面中,称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2025-03-19
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13