Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

倒推图像关键词

Answer

在图像创作中,倒推图像关键词有以下几种方式和相关要点:

  • 对于图生图功能,除了文本提词框外还有图片输入口,可通过图片给与 AI 创作灵感。随便照一张照片拖入后,文本输入框旁有两个反推提示词的按钮,CLIP 能通过图片反推出完整含义的句子,DeepBooru 能反推出关键词组。但两种方式生成的提示词可能存在瑕疵,需要手动补充信息。补充后调整宽度和高度,使红框匹配图片,同时注意两个重要参数:提示词相关性和重绘幅度。
  • 关键词接龙时,将润色后的关键词组合起来形成完整的图像描述,确保每个关键词都能在最终图像中得到体现。
  • 在视频转绘制作中,因为要对所有图片进行转换,关键词编写尽可能描述大概画面即可,推荐的公式是质量词+人物描述+环境描述+Lora。例如赛博风格转绘用到的正向提示词和反向提示词。
Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】真人转二次元?图生图如此强大

[title]【SD】真人转二次元?图生图如此强大作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-05-02 20:00原文网址:https://mp.weixin.qq.com/s/l-O9vT9-_xzy0uvxnkjV-w相比于文生图,图生图功能除了文本提词框以外还多了一个图片框的输入口,因此,我们还可以通过图片来给与AI创作的灵感。我们随便照一张照片,直接拖入进来。然后可以看到,在文本输入框的旁边有两个反推提示词的按钮:CLIP是可以通过图片反推出完整含义的句子;DeepBooru是可以反推出关键词组。上面的那一张图,我们通过两种反推方式得到的提示词分别为:CLIP——a young boy sitting on a bench with a toy train and a lego train set on the floor next to him,Adam Rex,detailed product photo,a stock photo,lyco art。(一个小男孩坐在长凳上,旁边的地板上放着一辆玩具火车和一辆乐高火车,亚当·雷克斯,详细的产品照片,一张库存照片,莱科艺术,)DeepBooru——shoes,solo,hat,orange_background,yellow_background,smile,socks,black_hair,sitting,sneakers。(鞋子,独奏,帽子,橙色背景,黄色背景,微笑,袜子,黑发,坐着,运动鞋)可以看到两种方式生成的提示词都有些瑕疵,比如第一组里面没有描述小孩的穿着,第二组里面没有描述小孩的性别和周围的物品,所以我们需要手动来补充提示词的信息。写好提示词之后,我们再调整一下宽度和高度,让这个红框刚好匹配我们的图片即可。接下来,最重要的是这两个参数:提示词相关性和重绘幅度。

关键词接龙

现在我们将这些润色后的关键词组合起来,形成一个完整的图像描述,确保每个关键词都能在最终的图像中得到体现。例如:中文:我们可以创建一个场景,描述一个韩流风格的猴子在禅宗艺术的背景下,站在险峻的悬崖上,旁边是一座古老的寺庙。这个场景可以用杉本博司的摄影风格来表现,光线是幽灵般的粉红色,整个画面有一种末日后的废墟感。在画面的一角,有一个微笑的脸庞和彩虹热气球,为这个场景增添了一丝乐观和幻想的元素。English:A K-pop monkey perches atop a cliff,framed by zen art and an ancient temple.The composition is captured in the photographic style of Hiroshi Sugimoto,bathed in ethereal pink light amidst post-apocalyptic scenery通过这样的分类、润色和组合,我们可以确保每个关键词都在最终的图像中发挥作用,并且共同创造出一个丰富而有趣的故事。

小田:视频转绘制作视频过程中不可或缺的一环

[title]小田:视频转绘制作视频过程中不可或缺的一环[heading1]一、转绘教程(Ebsynth Utility)[heading2]关键帧转绘图生图测试[heading3]5.1关键词编写因为我们需要做的操作是把所有图片都进行转换所以这里我们关键词尽可能描述出一个大概的画面就可以了。这里我推荐的关键词编写的公式可以是。质量词+人物描述+环境描述+Lora。这里把我的提示词放出来大家可以参考一下我之前赛博风格转绘用到的关键词正向提示词:absurdres,incredibly absurdres,artbook,real,photo,((futurism)),photo_(medium),cyberpunk,1boy,(PERFECT FACE:1.2),white_skin,black hair,slender face,ground vehicle,(helmeted:1.2),hat,jacket,long hair,long sleeves,motor vehicle,shoes,sitting,smile,socks,solo,autolinklora:cyberhelmetv0.7:0.6autolink,autolinklora:cyberpunkAI:0.6autolink,cyberhelmet,autolinklora:GlowingRunesAIv4:0.1autolink,GlowingRunesAI_pink,反向提示词:

Others are asking
使用coze提取包含我指定的几个关键词的小红书内容数据进行汇总及分析
以下是关于使用 Coze 提取包含指定关键词的小红书内容数据进行汇总及分析的相关内容: 首先,在“一枚扣子:Coze 应用+多维表格的高速数据分析”中提到: 1. 需求是根据博主链接获取笔记并自动写入多维表格,然后进行批量分析。 2. 完成后端准备工作后,需找到博主地址,批量读取笔记并写入多维表格的 note_url 列。 3. 打开 Coze 创建应用,可选择 PC 模式,需要几个参数如多维表格地址、数据表名、小红书博主首页地址。 4. 设计读取博主笔记列表的工作流,包括创建应用、开发工作流等步骤。工作流实际上只有读取、转换、写入三步,开始节点设置三个参数,第二步需进行数据转换,添加代码节点,最后在插件市场选择多维表格插件并配置参数。 其次,在“舆情管理大师汽车 bot 小队.pptx”中: 1. 提到采集结果实时更新、智能总结链接内容、智能打分辅助判断等功能。 2. 构建高效数据流转体系,包括数据入表、关键词库等。 3. 任意关键词的工作流都适配,只需要调整 prompt。 最后,在“一枚扣子:2.0Coze 应用+多维表格+数据分析”中: 1. 介绍了配置管理,通过用户变量保存设置用于其他工作流。 2. 编排工作流,在开始节点添加变量接收 UI 输入的配置参数。 3. 包括账号分析、关键词/赛道分析等工作流,基础工作流用于查询,同步数据工作流涉及代码节点。 综上所述,使用 Coze 提取小红书内容数据进行汇总及分析需要创建应用、配置参数、设计工作流,并结合多维表格等工具实现相关功能。
2025-03-25
我要写论文,想看看知网有哪些关键词应该怎么样提问ai
以下是关于知网关键词提问以及相关 AI 应用的一些信息: 知网关键词提问: 对于论文写作,在知网中提问关键词时,可以参考以下方面:书籍、报告、文件、详细信息、查询、主题、作者、出版日期、出版社、问题、方面、原则、方法、概括、主要观点、解释。 提问模板: 第一步:输入信息。向 ChatGPT 提供您要查询的书籍、报告或文件的详细信息,提供越详细,越能针对问题提供准确答案。例如:书籍:(书名)+(作者)+(出版日期)+(出版社);报告:(时间)+(主题);文件:(名称)。 第二步:提出问题。例如:这本书当中提到了关于 XXX 的哪些方面/原则/方法?根据 XXX 报告,XXX 行业的增长趋势是怎样的?请给我一个关于《XXX》报告的简要概括等。 AI 应用: 在图片生成方面,为了生成想要的图片,一般图片内容会分为二维插画以及三维立体两种主要表现形式。生成图片时,主题描述可以包括场景、故事、物体、人物的细节和搭配等。设计风格可以通过找风格类的关键词参考或垫图/喂图让 AI 生成相应风格的图片。但一个大场景中有多个角色的细节不太容易通过关键词生成。 开搜 AI 搜索是一款免费无广告、直达结果的搜索工具,具有以下应用场景: 帮助在校学生快速搜集专业领域的学术资料,智能总结关键信息,助力撰写论文和报告,同时支持查看来源出处,参考价值高。 方便教育教师群体获取丰富的教学资源,自动生成教案和课题研究报告,提高教学内容的准备效率。 助力职场办公人群高效查找工作所需信息,简化文案撰写、PPT 制作和工作汇报的准备工作。 为学术研究人员提供深入的行业分析,通过 AI 技术整合和总结大量数据,形成有深度的研究报告。
2025-03-21
怎么学ai关键词
学习 AI 关键词可以从以下几个方面入手: 1. 主题描述: 可以描述场景、故事、元素、物体或人物的细节和搭配。 对于场景中的人物,要进行独立描述,避免用一长串文字,将其拆分为多个部分,如“一个男孩、穿着红色盔甲、站在山顶”,这样更易接近想要的场景。但大场景中多个角色的细节不太容易通过关键词生成。 2. 设计风格: 设计师可能难以直接表达设计风格,可找风格类关键词参考或用垫图/喂图的方式,让 AI 根据给出的图片风格结合主题描述生成相应风格的图片。 研究特定材质如玻璃、透明塑料、霓虹色彩等的关键词,某些情况下可能需要加入设计师风格,单纯控制材质较难达到要求。 3. 视频镜头: 例如黑白镜头,提示词可为“黑白镜头,展示一个老街区的复古场景,增强怀旧感”。 特写镜头,如“特写镜头展示一双男性眼睛”。 微距镜头,如“微距镜头,超近距离拍摄一个蚂蚁的触角,背景虚化,增强画面的细腻感和真实感”。 掌握并理解提示词中的核心关键词并不困难,只要方法正确,就能独立还原并创新创作过程。大家可以一起收集和测试适用 AI 绘画提示词中的核心关键词,根据关键词做创意,收录不错的作品。
2025-03-10
请以轨道式、巡检机器人为关键词查找国外文献十五篇,要求这些文献真实可靠并且有一定的影响力,同时附上原文链接
很抱歉,目前没有查找到以轨道式、巡检机器人为关键词的国外文献十五篇及原文链接。建议您通过以下途径进行查找: 1. 学术数据库,如 Web of Science、Scopus 等。 2. 相关领域的专业学术期刊网站。 3. 大学图书馆的电子资源库。
2025-03-06
sd的关键词可以用中文吗
在 Stable Diffusion 中,通常只能识别英语关键词。但不用担心,您可以直接使用翻译工具将中文关键词翻译成英语后输入。比如,若您想生成一个漂亮的小姐姐站在大街上,可以写成“1 girl, beautiful, standing, street”这样的形式。输入关键词时,常用一个个单词并用英文状态下的逗号隔开。不过,对于中文字体的处理,也有一些方法,如将中文字做成白底黑字存成图片样式,再使用文生图的方式等。在输入关键词时,还可以先写一些提升照片质量的词语,使生成的照片更加精致。
2025-03-06
可以反推关键词的AI
以下是关于可以反推关键词的 AI 的相关内容: 在 Midjourney 中,AI 以半抽象方式解析提示,更倾向处理整体概念。获得理想结果的关键在于具体性,可从简单提示或参数修改开始逐步调整。此外,还可通过反推关键词来解析,方法如下: 1. 初始提示:例如“Prompt:A banana is floating in the airv 6.1 提示:一个香蕉漂浮在空中v 6.1”,查看生成结果,若不错但缺乏特定艺术方向,可进一步迭代优化。 2. 优化描述:如“Prompt:Banana shaped hologram of molten liquid metal,floating in air,isolated on a lilac background,minimalist design,vector illustration,high resolution photographyv 6.1 提示:香蕉形态的液态金属全息图,漂浮在空气中,在淡紫色背景上,极简设计,矢量插图,高分辨率摄影v 6.1”。 在 StableDiffusion 中,图生图功能除文本提词框外还有图片框输入口,可通过图片反推提示词。例如,随便一张照片拖入后,文本输入框旁有两个反推提示词的按钮:CLIP 可反推出完整含义的句子;DeepBooru 可反推出关键词组。但两种方式生成的提示词可能有瑕疵,需手动补充信息。 在使用 AI 生成图片时,若想让生成的图片更可控,可利用 seed 参数反向生成。Midjourney 会用种子号绘图,默认随机,可使用Seed 或same eseed 参数指定相同种子号和提示符以产生类似结尾图片。例如“caiyunyiueji is a cute sports anime girl,style by Miyazaki Hayao,emoji,expression sheet,8kseed 8888”,能保证每次生成相同的图,还可反向利用此特性对已确定的效果图进行微调。
2025-02-26
图像翻译
图像翻译具有以下特点和功能: 多语言支持:涵盖 18 种语言,包括中文、英文、法语、日语、韩语和西班牙语。 保护图像主体:可选择不翻译品牌名称或重要信息,避免影响关键内容。 高分辨率处理:支持高达 4000×4000 像素的图像,确保翻译后画质清晰。 原始排版恢复:保留原字体、大小及对齐方式,确保设计一致性。 多行文本合并:将多行文本合并为段落翻译,避免逐行翻译造成误解。 清除文本痕迹:翻译后干净移除原文本,并恢复图像空白区域。
2025-04-14
gpt4o图像生成提示词有哪些
以下是一些 GPT4o 图像生成的提示词示例: 1. 将这张图更改为蓝色氛围,星星图标改为魔法棒图标,同时将里面文案描述的主题改为其他的。 2. 帮我生成一张这样的 UI 设计稿:Peerlist 邀请链接界面分析,界面内容。 3. 一张逼真的照片,描绘了一匹马在宁静的海洋表面从右向左奔驰,准确地描绘了飞溅的水花。 Realistic photograph of a horse galloping from right to left across a vast,calm ocean surface,accurately depicting splashes,reflections,and subtle ripple patterns beneath their hooves.Exaggerate horse movements but everything else should be still,quiet to show contrast with the horse's strength.clean composition,cinematographic.A wide,panoramic composition showcasing a distant horizon.Atmospheric perspective creating depth.zoomed out so the horse appears minuscule compared to vast ocean.horse is right at the horizon where ocean meets sky.use rule of thirds to position horse.size of horse is 1% size of entire image because camera is so far away from subject.camera view is super close to the ground/ocean like a worm's eye view.horse is galloping right where ocean meets the sky 4. 生成一张 2006 年夏天的周六多伦多农夫市场的逼真照片,那天是六月的美好时光,人们在购物和吃三明治。焦点应是一个穿着牛仔工装裤、啜饮草莓香蕉奶昔的年轻亚洲女孩——其余部分可以模糊。照片应让人联想到 2006 年的数码相机拍摄的效果,带有像打印照片一样的日期和时间戳。画幅比例应为 3:2
2025-04-11
图像识别模型
图像识别模型通常包括编码器和解码器部分。以创建图像描述模型为例: 编码器:如使用 inception resnet V2 应用于图像数据,且大部分情况下会冻结此 CNN 的大部分部分,因为其骨干通常是预训练的,例如通过庞大的数据集如图像网络数据集进行预训练。若想再次微调训练也是可行的,但有时仅需保留预训练的权重。 解码器:较为复杂,包含很多关于注意力层的说明,还包括嵌入层、GRU 层、注意力层、添加层归一化层和最终的密集层等。 在定义好解码器和编码器后,创建最终的 TF Keras 模型并定义输入和输出。模型输入通常包括图像输入进入编码器,文字输入进入解码器,输出则为解码器输出。在运行训练前,还需定义损失功能。 另外,还有一些相关模型的安装配置,如 siglipso400mpatch14384(视觉模型),由 Google 开发,负责理解和编码图像内容,其工作流程包括接收输入图像、分析图像的视觉内容并将其编码成特征向量。image_adapter.pt(适配器)连接视觉模型和语言模型,优化数据转换。MetaLlama3.18Bbnb4bit(语言模型)负责生成文本描述。
2025-03-28
gpt4o图像生成
GPT4o 是 OpenAI 推出的具有强大图像生成能力的多模态模型,能够实现精确、准确、照片级真实感输出。其核心功能包括生成美观且实用的图像,如白板演示、科学实验图解等。亮点功能有精确的文本渲染,能在图像中准确生成文字,如街道标志、菜单、邀请函等;支持多样化场景生成,从照片级真实感到漫画风格均可;具有上下文感知能力,能利用内在知识库和对话上下文生成符合语境的内容。技术上通过联合训练在线图像和文本的分布,学会了图像与语言及图像之间的关系,经过后期训练优化,在视觉流畅性和一致性方面表现出色。实际应用场景包括信息传递、创意设计、教育与演示等。但也存在某些场景或细节的限制。安全性方面,OpenAI 强调了保护。目前该功能已集成到 ChatGPT 中,用户可直接体验。 此外,在 3 月 26 日的 AI 资讯汇总中,OpenAI 推出了 GPT4o 图像生成能力。昨晚 Open AI 更新 GPT4o 图像生成功能后,其真正强大之处在于几乎可以通过自然语言对话完成复杂的 SD 图像生成工作流的所有玩法,如重新打光、扩图、换脸、融脸、风格化、风格迁移、换装、换发型等。
2025-03-28
免费增强图像分辨率的
以下是一些免费增强图像分辨率的工具和方法: 1. Kraken.io:主要用于图像压缩,但也提供免费的图像放大功能,能保证图像细节清晰度。 2. Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术放大图像并赋予艺术效果,支持多种滤镜和风格。 3. Waifu2x:提供图片放大和降噪功能,使用深度学习技术提高图像质量,保留细节和纹理,简单易用效果好。 4. Bigjpg:强大的图像分辨率增强工具,使用神经网络算法加大图像尺寸,提高图像质量,处理速度快。 此外,还有以下相关资源: 1. 【超级会员 V6】通过百度网盘分享的 Topaz 全家桶,链接:https://pan.baidu.com/s/1bL4tGfl2nD6leugFh4jg9Q?pwd=16d1 ,提取码:16d1 ,复制这段内容打开「百度网盘 APP 即可获取」。 2. RealESRGAN:基于 RealESRGAN 的图像超分辨率增强模型,具有可选的人脸修复和可调节的放大倍数,但使用几次后要收费。 3. InvSR:开源图像超分辨率模型,提升图像分辨率的开源新工具,只需一个采样步骤(支持 1 5 的材料步骤)即可增强图像,可以高清修复图像。地址、在线试用地址:https://github.com/zsyOAOA/InvSR?tab=readme ov filerailway_car online demo 、https://huggingface.co/spaces/OAOA/InvSR 。 4. GIGAGAN:https://mingukkang.github.io/GigaGAN/ 。 5. Topaz Gigapixel AI:https://www.topazlabs.com/gigapixel ai 。 6. Topaz Photo AI:https://www.topazlabs.com/ 。 7. discord:https://discord.gg/m5wPDgkaWP 。
2025-03-24
图像生成
图像生成是 AIGC 的一个重要领域,离不开深度学习算法,如生成对抗网络(GANs)、变分自编码器(VAEs)以及 Stable Diffusion 等,以创建与现实世界图像视觉相似的新图像。 图像生成可用于多种场景,如数据增强以提高机器学习模型的性能,也可用于创造艺术、生成产品图像(如艺术作品、虚拟现实场景或图像修复等)。 一些具有代表性的海外项目包括: Stable Diffusion:文本生成图像模型,主要由 VAE、UNet 网络和 CLIP 文本编码器组成。首先使用 CLIP 模型将文本转换为表征形式,然后引导扩散模型 UNet 在低维表征上进行扩散,之后将扩散之后的低维表征送入 VAE 中的解码器,从而实现图像生成。 DALLE 3(Open AI):OpenAI 基于 ChatGPT 构建的一种新型神经网络,可以从文字说明直接生成图像。 StyleGAN 2(NVIDIA):一种生成对抗网络,可以生成非常逼真的人脸图像。 DCGAN(Deep Convolutional GAN):一种使用卷积神经网络的生成对抗网络,可生成各种类型的图像。 在图像生成的用法方面,图像生成端点允许您在给定文本提示的情况下创建原始图像。生成的图像的大小可以为 256x256、512x512 或 1024x1024 像素。较小的尺寸生成速度更快。您可以使用 n 参数一次请求 1 10 张图像。描述越详细,就越有可能获得您或您的最终用户想要的结果。您可以探索 DALL·E 预览应用程序中的示例以获得更多提示灵感。 图像编辑端点允许您通过上传蒙版来编辑和扩展图像。遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,而不仅仅是擦除区域。 AI 绘图 Imagen 3 具有以下功能点和优势: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:能够自动拆解用户输入的 Prompt,并提供下拉框选项。 自动联想:提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队:用户可以直接使用,无需排队。 免费使用:目前 Imagen 3 是免费提供给用户使用的。 交互人性化:提供了人性化的交互设计,如自动联想和下拉框选项。 语义理解:具有较好的语义理解能力,能够根据 Prompt 生成符合描述的图像。 灵活性:用户可以根据自动联想的功能,灵活调整 Prompt 以生成不同的图像。
2025-03-23