Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成关于“人工智能导论”的思维导图

Answer

以下是为您生成的关于“人工智能导论”的思维导图相关内容:

与思维导图相关的 AI 工具

  1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。
  2. ProcessOn:国内思维导图+AIGC 工具,能利用 AI 生成思维导图。
  3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。
  4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路、生成文章大纲。
  5. TreeMind:“AI 人工智能”工具,输入需求可自动生成思维导图。
  6. EdrawMind:提供 AI 工具,包括头脑风暴功能,提升生产力。

总的来说,这些工具都能通过 AI 技术提高思维导图制作效率,为知识工作者带来便利。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:与思维导图相关的 AI 工具有哪些

[title]问:与思维导图相关的AI工具有哪些以下是一些与思维导图相关的AI工具:1.GitMind:一款免费的跨平台AI思维导图软件,可以通过AI自动生成思维导图。支持提问、回答、自动生成等多种模式。2.ProcessOn:国内思维导图+AIGC的工具,可以利用AI生成思维导图。3.AmyMind:一个轻量级的在线AI思维导图工具,无需注册登录即可使用,支持自动生成节点。4.Xmind Copilot:Xmind推出的基于GPT的AI思维导图助手,可以一键拓展思路,生成文章大纲。5.TreeMind:一款"AI人工智能"思维导图工具,可以输入需求由AI自动完成思维导图生成。6.EdrawMind:提供了一系列AI工具,包括AI驱动的头脑风暴功能,帮助用户提升生产力。总的来说,这些AI思维导图工具都能够通过AI技术自动生成思维导图,大大提高了思维导图的制作效率,为知识工作者带来便利。内容由AI大模型生成,请仔细甄别

kimi:一些prompt技巧

这里的Kimi可不是王者荣耀背后的天美,而是月之暗面公司推出的、类似ChatGPT的大模型聊天机器人。kimi.moonshot.cn/它的特点就是支持超长的上下文,能输入长达20w字:真的假的?试一试就知道了:厉害??!一口气吞下整本书!看了一下这本书的出版信息,字数为“300千字”,超过20w了![heading3]Kimi -梳理整本书[content]那么,就让Kimi来梳理全书,帮我快速复习一下:基本上跟目录一一对照(它将第8章的内容拆成了两部分,把“深度学习的应用案例”单列一章,合理)。这样的梳理还不够细致,能更细一点吗?整个脉络一下子就清清楚楚了。再细一点:能生成思维导图吗?现在还不行:借助MarkMap,就能得到这本书内容的思维导图,漂亮:[heading3]Kimi -知识点讲解[content]上面是让Kimi给我梳理和复习,是大纲概览性质的,方便“观其大略”。如果要深入某个具体的章节或者知识点,可以让Kimi展开讲讲。比如“神经网络”的核心概念:进一步让它给出例子和代码:可以随便与Kimi在某个主题上对话,从而获得深入的理解。[heading3]Kimi -给我出套题[content]当然,要获得对知识点掌握程度的了解,最直接的方式就是“做卷子”,这是我们从小到大学校教育根深蒂固植入脑海的。那么,就让Kimi出题吧:Kimi真是一个耿直boy,直接把题的答案一起给出来了。还是一道题一道题来吧:可以随时让它告诉你得分情况:或者随时终止测试:

沃尔夫勒姆:人工智能能解决科学问题吗?

[title]沃尔夫勒姆:人工智能能解决科学问题吗?[heading2]科学作为叙事So can AI help us automatically create such explanations?To do so it must in a sense have a model for what we humans understand—and how we express this understanding in words,etc.It doesn’t do much good to say “here are 100 computational steps that produce this result”.To get a “human-level explanation” we need to break this down into pieces that humans can assimilate.那么人工智能可以帮助我们自动创建这样的解释吗?要做到这一点,它在某种意义上必须有一个我们人类理解的模型,以及我们如何用语言表达这种理解等。说“这是产生这个结果的100个计算步骤”并没有多大用处。为了获得“人类水平的解释”,我们需要将其分解为人类可以吸收的部分。As an example,consider a mathematical proof,generated by automated theorem proving:作为一个例子,考虑一个由自动定理证明生成的数学证明:

Others are asking
如何自动生成思维导图 有推荐的工具吗
以下是一些可以自动生成思维导图的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,包括通过 AI 自动生成思维导图。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路并生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动生成思维导图。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能借助 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,在使用<generateTreeMind>插件节点自动生成思维导图时,有以下配置思路: 1. 确定处理方式:一次精读任务仅需生成一张思维导图,选择“单次”处理方式。 2. 确定输入:在输入区,该插件仅需设置{{query_text}}变量,格式为 string 字符串,引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。 3. 确定输出:观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来定位所需字段。若需要图片格式的思维导图,确定 pic 为所需输出。
2025-04-03
ai思维导图提示词
以下是关于 AI 思维导图提示词的相关内容: 在文生图的提示词中,例如“”,来告诉 AI 不要的内容。 在 AI 作图的创作中,有以下要点: 1. 趣味性与美感概念:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 2. 纹身图创作:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 优化和润色提示词(Prompt)的方法包括: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述需求,而非过于笼统的词语。 2. 添加视觉参考:在 Prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:用合适的形容词、语气词等调整 Prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究流行且有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法,并根据输出效果反馈持续优化完善。 总之,编写高质量 Prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维尝试创新描述方式。
2025-03-31
思维导图生成ai
以下是一些与思维导图相关的 AI 工具: 1. GitMind:免费的跨平台思维导图软件,可通过 AI 自动生成思维导图,支持多种模式,如提问、回答、自动生成等。 2. ProcessOn:国内的思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。 此外,还有一些关于思维导图生成的相关信息: 在使用 flowith 时,可通过引用节点技巧让 AI 根据特定参照输出高关联度内容,还可对比不同模型输出择优深挖,在满意内容节点添加“文本编辑器显示”进行精加工。 12 月更新的生成式 AI 年终数据中,思维导图相关的如 Whimsical Al 等也有相关流量等数据统计。
2025-03-25
思维导图自动生成
以下是关于思维导图自动生成的相关内容: 使用 Coze 工作流自动生成思维导图: 在上一步生成英文阅读大纲后,使用<generateTreeMind>插件节点自动生成思维导图。 1. 确定处理方式:选择“单次”,因为一次精读任务仅需生成一张思维导图。 2. 确定输入:在输入区,该插件仅需设置{{query_text}}变量,格式为 string 字符串,引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。 3. 确定输出:观察输出区,所需的是图片格式的思维导图,确定 pic 为需要的输出字段。 与思维导图相关的 AI 工具: 1. GitMind:免费跨平台,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 自动生成思维导图的在线工具 ChatMind: 开发者@石天放开发的 ChatMind 是利用 AI 自动生成思维导图的在线工具,只需要输入问题、文章、数据就可以,对于问题还能自己获取答案,可导出图片与 Markdown 文档两种格式。链接:https://www.chatmind.tech/
2025-03-23
关于思维导图的提示词
以下是关于思维导图提示词的相关信息: 在文生图的提示词中,例如“”,用来告诉 AI 我们不要的内容。 在星流一站式 AI 设计工具中,提示词用于描绘您想生成的画面。输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。写好提示词要注意内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。还可以调整负面提示词,点击提示框下方的齿轮按钮弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。利用“加权重”功能,可在功能框增加提示词并进行加权重调节,权重数值越大越优先,也能对已有的提示词权重进行编辑。此外,还有翻译功能可一键将提示词翻译成英文,以及删除所有提示词和会员加速等辅助功能。 对于 SD 新手,有以下提示词模板的相关网站:Majinai:
2025-03-14
思维导图
以下是关于头脑风暴和思维导图的相关内容: 头脑风暴常用的 20 个 prompt: 1. Brainwriting 研究写作:“我们一起为头脑风暴,尽量写下很多点子,然后我可以在它们的基础上加入相关的想法。请用 markdown 结构你的回答。” 2. Reverse Brainstorming 反向头脑风暴:“我们为使用反向头脑风暴——故意提出糟糕的点子可以激发创意并引导我们走向新的方向。” 3. Mind Mapping 思维导图:“请为创建一个完整的思维导图,从一个中心概念开始,然后向外扩展与其相关的分支。” 4. Assumptions 假设:“列出你对的假设。然后,你如何挑战这些假设来提出创新的点子?描述你的过程。” 5. SWOT Analysis SWOT 分析:“让我们对进行 SWOT 分析,考虑内部的优势/劣势和外部的机会/威胁。然后写一个结论进行总结。” 6. SCAMPER SCAMPER 法:“使用 SCAMPER 清单对进行构思。我们如何替代、结合、适应、修改、用于其他用途、消除或逆转?详细描述你的答案。” 7. Six Thinking Hats 六顶思考帽:“使用六帽方法:红帽是乐观的,黑帽看到的是负面的等等。从不同的思维角度对进行构思。” 8. Worst Possible Idea 最坏的点子:“故意为想出很糟糕的点子,以新的方向激发创意。稍微扩展你的答案,解释为什么这些点子不好。” 9. Trigger Words 触发词:“这里有一些随机词:相关的新点子?” 10. Questioning 提问:“生成关于的问题,比如谁、什么、什么时候、在哪里、为什么、怎么样?将问题转化为点子。” 11. Rolestorming 角色扮演:“扮演。我的目标是找到新的改进方法。” 12. Scenarios 场景:“想象一个的最佳情境:一切都进行得很顺利。现在想象一个最” 关于儿童新闻百事通中思维导图的应用: 1. 应用缘由: 从新闻到旧闻,拒绝缪闻,追本溯源。 由点及面,广度与深度兼顾,培养小朋友的探究意识与能力。 凝练提升,形成强大的知识网络,助力小朋友研究性思维、统合型能力的培养。 2. 具体操作: 通过新闻涉及的主题词/关键词,或是小朋友对新闻中的感兴趣点,提取背后的知识点。 调用“generateTreeMind”插件,创建一个思维导图,清晰展示知识点的起源、发展和相互关系,凝练知识网络。 通过“快捷指令”提醒小朋友,可以使用此功能。 3. 实操展示: 初步尝试:放在聊天机器人的工作流里,能使用,但调用比较慢,且不能顾到全局。 后期调整:直接调用插件+提示词直接 cue 到,Precess on VS 树状图:前者不能直接出图,后者可以且点击后可以直达网站,进行二次修改。 实操展示包括新闻激发、提炼关键词/主题词/兴趣点,并发出指令“思维导图”。
2025-03-13
李宏毅《生成式人工智能导论》课件
以下是关于李宏毅《生成式人工智能导论》的相关信息: 课程目录: 1. 第 0 讲:课程说明(2024 年 2 月 24 日) 2. 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 3. 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 4. 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 5. 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 6. 待更新…… 第 0 讲课程说明的要点: 1. 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 2. 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型。同时提到负面体验,如大模型训练花时间(以周为单位)、结果不可控。 3. 影响模型能力的指标很多,常规会看参数的量级来评估,量级指数级增长,FOMO,如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 附录: 1. 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。 2. 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 3. 学习内容:包括什么是生成式 AI、生成式模型、生成式对话、预训练语言模型、生成式 AI 的挑战与展望等方面。 4. 学习资源:教材《生成式 AI 导论 2024》,参考书籍《深度学习》,在线课程李宏毅的生成式 AI 课程,开源项目 OpenAI GPT3、字节跳动的云雀等。 5. 学习方法。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-01-16
人共智能导论思维导图
以下是为您整理的关于人工智能相关的内容: 1. 头脑风暴常用的 20 个 prompt:包括 Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping 等。 2. 构建外脑/智变时代的个人知识管理:从哲学角度思考知识被 AI 重塑后人的意义,认为超级智能将是人类的外脑,人类独特的个性等将与智能个体融合成为化身,共同汇聚成智能时代的新知识网络。 3. 生成式人工智能在教学中的应用:涉及多媒体、虚拟现实、移动设备等方面,涵盖全面发展个性化学习、协作学习、创新能力等内容,还包括数字校园、智慧课堂、在线社区等场景,以及培养元认知能力、创新思维等能力,以及人机协同、因材施教等理念。
2024-10-20
人工智能导论思维导图
以下是为您提供的人工智能导论思维导图相关内容: 与思维导图相关的 AI 工具有: 1. GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图与 AIGC 结合的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求后由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,有助于提升生产力。 总的来说,这些工具都能通过 AI 技术自动生成思维导图,提高制作效率,为知识工作者带来便利。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-18
人工智能导论
以下是关于人工智能导论的相关内容: 微软提供了 AI 初学者入门课程,其中包括人工智能导论。在这门课程中,您将学到: 实现人工智能的不同方法,如使用知识表示和推理的符号人工智能,它属于“有效的老式人工智能”(GOFAI)。 神经网络和深度学习,会使用 TensorFlow 和 PyTorch 两个流行框架中的代码来说明重要概念。 处理图像和文本的神经架构,但在前沿信息上可能有所欠缺。 不太流行的人工智能方法,如遗传算法和多智能体系统。 课程还包含了人工智能简介和历史的课前测试,指出人工智能研究如何使计算机表现出智能行为,例如做人类擅长的事。最初计算机遵循明确的程序运算,而像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 课程列表中编号为 I 的课程即为人工智能导论,其相关讲义可通过获取。
2024-09-29
《生成式 AI 导论 2024》李宏毅课程在哪里可以学习
您可以在以下网址学习李宏毅的《生成式 AI 导论 2024》课程:https://www.youtube.com/watch?v=AVIKFXLCPY8 课程目录如下: 第 0 講:課程說明(2024 年 2 月 24 日) 第 1 講:生成式 AI 是什麼?(2024 年 2 月 24 日) 第 2 講:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」(2024 年 3 月 3 日) 第 3 講:訓練不了人工智慧?你可以訓練你自己—神奇咒語與提供更多資訊(2024 年 3 月 3 日) 第 4 講:訓練不了人工智慧?你可以訓練你自己—拆解問題與使用工具(2024 年 3 月 10 日) 待更新…… 该课程的附录内容包括: 一、课程介绍 这是台湾大学李宏毅教授的生成式 AI 课程,主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容。课程共分为 12 讲,每讲约 2 小时。 二、学习目标 通过学习本课程,掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 三、学习内容 1. 什么是生成式 AI 生成式 AI 的定义和分类 生成式 AI 与判别式 AI 的区别 生成式 AI 的应用领域 2. 生成式模型 生成式模型的基本结构和训练方法 生成式模型的评估指标 常见的生成式模型及其优缺点 3. 生成式对话 生成式对话的基本概念和应用场景 生成式对话系统的架构和关键技术 基于生成式模型的对话生成方法 4. 预训练语言模型 预训练语言模型的发展历程和关键技术 预训练语言模型的优缺点 预训练语言模型在生成式 AI 中的应用 5. 生成式 AI 的挑战与展望 生成式 AI 面临的挑战和解决方法 生成式 AI 的未来发展趋势和研究方向 四、学习资源 教材:《生成式 AI 导论 2024》,李宏毅
2024-09-03
生成式AI导论
以下是关于《生成式 AI 导论 2024》李宏毅课程的相关内容: 课程介绍: 这是台湾大学李宏毅教授的生成式 AI 课程,主要涵盖生成式 AI 的基本概念、发展历程、技术架构和应用场景等。课程共 12 讲,每讲约 2 小时。 学习目标: 通过本课程,掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。 学习内容: 1. 什么是生成式 AI:包括定义和分类,与判别式 AI 的区别,应用领域。 2. 生成式模型:基本结构和训练方法,评估指标,常见模型及其优缺点。 3. 生成式对话:基本概念和应用场景,系统架构和关键技术,基于生成式模型的对话生成方法。 4. 预训练语言模型:发展历程和关键技术,优缺点,在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:面临的挑战和解决方法,未来发展趋势和研究方向。 第 1 讲:生成式 AI 是什么 1. 定义:机器产生复杂有结构的物件。 2. AI 和 AGI 的关系:涉及机器学习、深度学习、类神经网络等。 3. 以 ChatGPT 等为例讲解,如 ChatGPT 是文字接龙,语言模型将复杂问题变成分类问题,生成策略采用回归等。 学习资源: 教材为《生成式 AI 导论 2024》,李宏毅。
2024-09-03
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
我想用扣子搭建有着我自己思维的智能体,让他能进行日常对话和创作
以下是用扣子搭建具有自己思维的智能体,使其能进行日常对话和创作的步骤: 1. 创建智能体:使用单 Agent 对话流模式。 2. 编排对话流:点击创建新的对话流并与智能体关联,在获取笔记详情节点和笔记评论节点分别配置 cookie,note_link 使用开始节点的 USER_INPUT,使用代码节点进行数据处理,注意代码节点输出的配置格式。 3. 测试:找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据,同时在智能体的编排页面进行测试,确保对话流执行成功。 4. 发布:点击发布后选择多维表格,进行配置,包括输出类型选文本、输入类型选字段选择器,完善上架信息,填写表格,选发布范围时可选择仅自己可用以加快审核。 此外,扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法,能解决大模型的知识不足问题。在智能体中可运用自己的知识库,如收集地道口语表达的短句。还可为智能体添加开场白以提升体验。 在多智能体模式设置中,包括全局设置和多个代理之间的编排协调。全局设置涉及角色设定与回复逻辑、记忆管理和对话体验等,在设计智能体交互流程时应形成完整互动链条,采用循环机制而非单向流程,可通过旅游场景中景点推荐、路线规划和食宿安排等智能体的例子来理解。
2025-03-16