Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何训练自己的文生文大模型?

Answer

训练自己的文生文大模型是一个复杂且计算量巨大的过程,主要包括以下步骤:

  1. 准备资源:需要大量的互联网文本资源,通常约 10TB 的文本,用于模型的训练。
  2. 硬件设施:需要一个 GPU 集群,大约 6000 个 GPU,运行约 12 天,费用约 200 万美元。
  3. 模型选择与理解:了解不同的模型架构和算法,例如 Llama2 70B 等开源模型,以及其训练方式和相关论文。
  4. 数据处理:对获取的大量文本进行处理和压缩,将其转化为适合模型训练的格式。
  5. 训练过程:这是一个复杂的计算过程,类似于对互联网的一大块内容进行有损压缩,以获取模型的参数。

需要注意的是,模型训练比模型推理要复杂得多,模型推理可以在 MacBook 上运行,但训练需要强大的计算能力和大量的资源支持。

Content generated by AI large model, please carefully verify (powered by aily)

References

文章:Andrej Karpathy 亲授:大语言模型入门

[title]文章:Andrej Karpathy亲授:大语言模型入门[heading1]第一部分:大型语言模型(LLMs)因此,您只需要这两个文件和一台MacBook,就可以构成一个完全独立的系统,无需连接互联网或其他设施。您可以编译C代码,得到一个可以指向参数文件的二进制文件,然后与语言模型进行交互。例如,您可以请求模型创作一首关于Scale.ai公司的诗,模型将根据指令生成文本。我之所以选择Scale.ai作为例子(您会在整个讲座中看到),是因为我最初的讲座是在Scale.ai主办的活动中进行的,因此我在整个讲座中都使用了它们的例子。在视频中,我展示的是一个运行70亿参数模型的例子,而不是700亿参数的模型,因为后者的运行速度会慢大约10倍。我的目的是让您了解文本生成的过程和外观。LLM训练当我们谈论获取这些参数时,我们面临的是一个计算复杂性问题。那么,我们是如何获得这些参数的呢?尽管run.c文件中的内容、神经网络架构以及前向传播等都可以通过算法理解和开放,但真正的魔法在于参数的获取。模型训练比模型推理要复杂得多。模型推理可以简单地在MacBook上运行,而模型训练则是一个计算量极大的过程。我们所做的可以被理解为对互联网的一大块内容进行压缩。Llama2 70B作为一个开源模型,我们对其训练方式有很多了解,因为Meta在论文中发布了相关信息。训练过程涉及大约10TB的文本,通常来源于互联网的抓取。您需要大量的互联网资源和一个GPU集群,这些专业计算机用于执行如神经网络训练这样的繁重计算任务。您需要大约6000个GPU,运行约12天,费用大约200万美元,以将这一大块文本压缩成类似于zip文件的形式。这些参数文件大约140GB,压缩比大约是100倍。但这不是无损压缩,而是有损压缩,我们得到的是训练文本的一种格式塔,而不是原始文本的完整副本。

【SD】向未来而生,关于SDXL你要知道事儿

[title]【SD】向未来而生,关于SDXL你要知道事儿[heading1]#本地部署与在线使用[heading2]1.本地部署SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!还没完,我们到现在还只使用了一个base模型,接下来,将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

[title]Ranger:【AI大模型】非技术背景,一文读懂大模型(长文)[heading2]三、理解模型如何运作[heading3]2.多模态的原理ok讲完了LLm,我们来看多模态是怎么实现的多模态模型目前基本就是文生图、图生图、图生视频、文生视频这些,其底层逻辑其实还是先从生图片这一源头。因为毕竟视频也是若干帧的图片组成。所以在生图片的这个环节上,我们把比较火的这个stablediffusion用的这个diffusion扩散模型理解掉,也就差不多够了。那么什么是扩散模型呢,这里我拿论文中的两张图帮助理解一张是前向的,在图片上加噪点,最终生成一张无意义的噪点图,一个是后向的,从一个无意义的噪点图上消除噪点,最终得到一张有意义的实际图片。其实扩散模型训练的就是这个加减噪点的过程:先把海量的带有标注文字描述的图片,例如“一只白色的小猫”,逐渐加满噪点。在这个过程中,模型会把每一步的图片向量值,和文字的向量值的数据分布的演变规律,进行系统学习并沉淀下来,这就完成了模型的训练。在后续我们输入文字后,模型就可以根据输入的文字转化为的向量,去指导一个充满噪点的图片每一步减噪点的过程,生成最终的图片。这里其实有两个点一个是diffusion模型中加减噪点的方式,其实也与我们大脑中去构思一张图片的方式有些类似,我们去想像一张图片的时候,不也是从一片模糊中逐渐想清楚一张图片嘛第二个是多模态模型会把文字的向量值和图片的rgb像素点的向量值进行关联,这个也像极了我们大脑中的一个思考过程。

Others are asking
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
论文生成
以下是关于论文生成的相关信息: Deepseek V3 案例:有人用 Claude 做了一系列各种风格卡片的提示词,并在 V3 上进行尝试,效果不错。还有人把论文变成可视化。 ChatGPT 文本生成:以“词”为单位进行文本生成,存在随机性,有特定的“温度”参数控制较低排名单词的使用频率,对于文章生成“温度”为 0.8 效果较好。 论文写作的 AI 产品: 文献管理和搜索:Zotero 可自动提取文献信息,Semantic Scholar 是 AI 驱动的学术搜索引擎。 内容生成和辅助写作:Grammarly 提供文本校对等帮助,Quillbot 可重写和摘要。 研究和数据分析:Google Colab 支持 AI 和机器学习研究,Knitro 用于数学建模和优化。 论文结构和格式:LaTeX 结合自动化和模板处理格式,Overleaf 是在线 LaTeX 编辑器。 研究伦理和抄袭检测:Turnitin 和 Crossref Similarity Check 检测抄袭。 使用这些工具时要结合自身需求和写作风格,并仔细甄别内容。
2025-04-13
文生图
以下是关于文生图的简易上手教程: 1. 定主题:确定您需要生成的图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等。 3. 选择 lora:在生成内容基础上,寻找重叠的 lora 以控制图片效果和质量,可参考广场上好看的帖子。 4. ControlNet:可控制图片中特定图像,如人物姿态、生成特定文字等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:无脑选择 840000 即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样是单词和短语组合,用英文半角逗号隔开,不用管语法。 9. 采样算法:一般选 DPM++2M Karras 较多,也可参考 checkpoint 详情页上模型作者推荐的采样器。 10. 采样次数:选 DPM++2M Karras 时,采样次数一般在 30 40 之间。 11. 尺寸:根据个人喜好和需求选择。 以下是一些常见的文生图工具和模型: 1. 腾讯混元 2. luma 3. Recraft 4. 文生图大模型 V2.1L(美感版) 5. 美图奇想 5.0 6. midjourney 7. 快手可图 8. Flux.1.1 9. Stable Diffusion 3.5 Large 10. Imagen 3 网页版
2025-04-12
文生图工具
以下是关于文生图工具的相关信息: 常见的文生图工具包括: DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真图片。 StableDiffusion:开源工具,可生成高质量图片,支持多种模型和算法。 MidJourney:因高质量图像生成效果和友好界面在创意设计人群中受欢迎。 更多文生图工具可在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看。 Stability AI 推出的基于 Discord 的媒体生成和编辑工具的文生图使用方法: 点击链接进入官方 DISCORD 服务器:https://discord.com/invite/stablediffusion 。 进入 ARTISAN 频道,任意选择一个频道。 输入/dream 会提示没有权限,点击链接,注册登录,填写信用卡信息以及地址,提交后可免费试用三天,三天后开始收费。 输入/dream 提示词,和 MJ 类似,可选参数有五类,包括 prompt(提示词,正常文字输入,必填项)、negative_prompt(负面提示词,填写负面提示词,选填项)、seed(种子值,可以自己填,选填项)、aspect(长宽比,选填项)、model(模型选择,SD3,Core 两种可选,选填项)、Images(张数,14 张,选填项)。完成后选择其中一张。 Tusiart 文生图的简易上手教程: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:根据主题找内容贴近的 checkpoint,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 控制图片效果及质量。 ControlNet:控制图片中特定图像,如人物姿态、生成特定文字、艺术化二维码等。 局部重绘:下篇再教。 设置 VAE:无脑选择 840000 。 Prompt 提示词:用英文写需求,单词和短语组合,用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语组合,用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。
2025-04-12
文生图大模型排名
以下是文生图大模型的排名(从高到低): 1. Imagen 3:真实感满分,指令遵从强。 2. Recraft:真实感强,风格泛化很好,指令遵从较好(会受风格影响)。 3. Midjourney:风格化强,艺术感在线,但会失真,指令遵从较差。 4. 快手可图:影视场景能用,风格化较差。 5. Flux.1.1:真实感强,需要搭配 Lora 使用。 6. 文生图大模型 V2.1L(美感版):影视感强,但会有点油腻,细节不够,容易糊脸。 7. Luma:影视感强,但风格单一,糊。 8. 美图奇想 5.0:AI 油腻感重。 9. 腾讯混元:AI 油腻感重,影视感弱,空间结构不准。 10. SD 3.5 Large:崩。
2025-04-12
论文生成提示词
以下是为您整理的关于论文生成提示词的相关内容: 1. 在关于 DALL·E 3 论文的研究中,提示词包括: 给评分员提供完整的图像描述内容,要求评分员选择更符合文本描述的图像。 让评分员想象自己正在借助工具根据文本生成图像,并选择希望看到的图像。 让评分员从人的身体部位、面部和姿势、对象的位置等方面判断图像的连贯性。 但 DALL·E 3 仍存在空间感知不佳、构建文本描述生成器时的功能不可靠、生成的图片在重要细节上产生幻觉等问题。 2. 云舒为读懂 Claude 论文使用的提示词: “论文深度剖析导师”提示词,可用于深度理解文本,如解读公众号文章、专业论文、书籍、在线课程等。 还可用于求职分析,拆解岗位描述并定制求职攻略,甚至作为自我介绍的“测谎仪”。 希望以上内容对您有所帮助。
2025-04-10
有论文大纲怎么ai生成一篇完整的论文且文献要真实
利用 AI 生成一篇完整且文献真实的论文,您可以参考以下步骤和建议: 1. 确定课题主题:明确您的研究兴趣和目标,选择一个具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎(如 Semantic Scholar)和文献管理软件(如 Zotero)来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具(如 Quillbot)来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具(如 Google Colab、Knitro)来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具(如 Grammarly)来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具(如 Turnitin、Crossref Similarity Check)来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。 在论文写作领域,以下是一些常用的 AI 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可以自动提取文献信息,帮助研究人员管理和整理参考文献。 Semantic Scholar:一个由 AI 驱动的学术搜索引擎,能够提供相关的文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,帮助提高论文的语言质量。 Quillbot:一个基于 AI 的重写和摘要工具,可以帮助研究人员精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化。 Knitro:一个用于数学建模和优化的软件,可以帮助研究人员进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽然不是纯粹的 AI 工具,但结合了自动化和模板,可以高效地处理论文格式和数学公式。 Overleaf:一个在线 LaTeX 编辑器,提供丰富的模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:一个广泛使用的抄袭检测工具,帮助确保论文的原创性。 Crossref Similarity Check:通过与已发表作品的比较,检测潜在的抄袭问题。 使用这些工具时,重要的是要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-04-13
我已经有了论文大纲,需要生成技术路线图,哪个AI可以实现
以下是一些可以帮助您生成技术路线图的 AI 工具和方法: 1. 利用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 2. 使用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 3. 对于生成“延伸思考”的问题,可以让 AI 根据特定的参照(比如之前的产出或是新增的参考文案)输出具备更高关联度的内容。 4. 可以用同一段提示词对比不同模型的输出,择优深挖。 5. 在满意的内容节点上添加“文本编辑器显示”,对文本进行精加工。 6. 先确定整个调研报告的大纲目录,例如通过手机识别示例报告的目录截图。 7. 让 AI 总结语言风格,如将范文交给 Claude 2 总结语言风格。 8. 让 GPT4 按照目录逐步生成章节内容,设置循环结构,根据情况决定是否调用 webpolit 插件查询相关信息。 9. 在需要搜索网络信息的章节处打上标签,让 GPT4 自主搜索信息再来生成内容。 需要注意的是,AI 工具可以作为辅助,但不能完全替代您的专业判断和创造性思维。在使用 AI 进行相关工作时,应保持批判性思维,并确保成果的质量和学术诚信。
2025-04-08
以水稻主要物候期遥感识别为主题,生成一篇论文大纲
以下是以水稻主要物候期遥感识别为主题的一篇论文大纲示例: 一、引言 1. 研究背景与意义 2. 国内外研究现状 3. 研究目的与内容 二、水稻物候期相关理论与遥感技术基础 1. 水稻物候期的定义与特征 2. 常用的遥感技术及原理 3. 遥感数据的类型与特点 三、水稻主要物候期的遥感特征分析 1. 不同物候期水稻的光谱特征 2. 多时相遥感数据在物候期识别中的应用 3. 影响遥感识别的因素 四、水稻主要物候期遥感识别方法 1. 基于光谱特征的识别方法 2. 基于植被指数的识别方法 3. 机器学习与深度学习在物候期识别中的应用 五、实验与结果分析 1. 研究区域与数据获取 2. 实验设计与流程 3. 识别结果的精度评估 4. 结果分析与讨论 六、结论与展望 1. 研究成果总结 2. 研究的局限性 3. 未来研究方向与展望 以上大纲仅供参考,您可根据实际研究需求进行调整和完善。
2025-03-21
ai对论文大纲的扩写
以下是关于 AI 对论文大纲扩写的相关内容: 利用 AI 技术进行论文大纲扩写可以参考以下步骤和方法: 1. 确定主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 开始扩展:以具体内容为例深化理解,如“AI 辅助写作的优势”,可详细描述个人经验中 AI 提高写作效率、提供创意思路、克服写作瓶颈以及处理和分析数据的具体表现。 6. 持续优化和润色:在扩展每个部分后,与 AI 互动,请其审阅并提供进一步的优化建议,如指出表达不清的地方,建议添加转折句增强连贯性。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文大纲扩写时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-03-18
用DEEPSEEK结合开题报告写一个论文大纲的指令
以下是一个基于 DEEPSEEK 结合开题报告的论文大纲示例: 一、引言 1. 研究背景和意义 2. 研究目的和问题 二、高阶能力调用 1. 文风转换矩阵 指令结构 效果示例 作家风格移植:用鲁迅杂文风格写职场 PUA 现象 文体杂交:将产品说明书改写成《史记》列传格式 学术口语化:把这篇论文摘要翻译成菜市场大妈能听懂的话 2. 领域穿透技术 行业黑话破解:解释 Web3 领域的“胖协议瘦应用”理论 三、场景化实战策略 1. 商业决策支持 2. 创意内容生成 3. 技术方案论证 四、效能增强技巧 1. 对话记忆管理 上下文锚定:记住当前讨论的芯片型号是麒麟 9010 信息回溯:请复述之前确认的三个设计原则 焦点重置:回到最初讨论的供应链问题 2. 输出质量控制 问题类型 修正指令 过度抽象:请具体说明第三步操作中的温度控制参数 信息过载:用电梯演讲格式重新组织结论 风格偏移:回归商务报告语气,删除比喻修辞 五、特殊场景解决方案 1. 长文本创作 分段接力法:先完成故事大纲→逐章扩展→最后进行伏笔校验 确保新章节与前文的三处细节呼应 2. 敏感内容处理 概念脱敏法:用经济学原理类比说明网络审查机制 场景移植法:假设在火星殖民地讨论该议题 六、高级调试策略 1. 模糊指令优化 问题类型 修正方案 示例对比 宽泛需求:添加维度约束 主观表述:量化标准 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 七、行业应用案例 1. 技术开发场景 2. 商业分析场景 八、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证 九、效能监测指标 1. 首次响应准确率:目标>75% 2. 多轮对话效率:问题解决平均轮次<3 3. 复杂任务分解:支持 5 级子任务嵌套
2025-03-03
2024 年值得关注的中文大模型全景图
2024 年,AI 大模型在生产和生活中落地速度迅猛,被称为国内大模型落地元年。以下是一些值得关注的情况: 国内大模型行业形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 2024 年 9 月 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法;Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正在加速成为体系化之战。
2025-02-21
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
这个网站的作用是什么?是通过这个网站更好的使用训练AI吗?
WaytoAGI 网站具有以下功能: 1. 和 AI 知识库对话:您可以在此询问任何关于 AI 的问题。 2. AI 网站:集合了精选的 AI 网站,可按需求找到适合您的工具。 3. AI 提示词:集合了精选的提示词,能复制到 AI 对话网站使用。 4. 知识库精选:将每天知识库的精华内容呈现给大家。 总之,WaytoAGI 网站和 WaytoAGI 知识库相互独立又有关联,希望成为您学习 AI 路上的好助手。
2025-04-13
想自学ai训练师 推荐哪个视频去学习
以下是为您推荐的自学 AI 训练师的视频: 1. 3 月 26 日|自由讨论|离谱视频切磋大会 猫先生介绍自己的背景和擅长领域 AI 学习与实践的重要性 AI 交流会:分享项目经验和技能 讨论比赛规则和资源分配 AI 工具学习与合作 广州 AI 训练师叶轻衣分享使用 AI 工具的经验和想法 组队提升工作效率 AI 技术在 3D 动画制作中的应用与优势 链接:https://waytoagi.feishu.cn/minutes/obcnc915891t51l64uyonvp2?t=0 2. AI 大神 Karpathy 再发 LLM 入门介绍视频 神经网络训练的目标:训练神经网络的目标是让模型学习 token 在序列中彼此跟随的统计关系,即预测给定上下文(token 序列)后,下一个最有可能出现的 token。 Token 窗口:训练时,模型从数据集中随机抽取固定长度的 token 窗口(例如 8000 个 token)作为输入。 神经网络的输入与输出:输入为 Token 序列(上下文),输出为预测下一个 token 的概率分布,词汇表中每个 token 都有一个概率值。 随机初始化与迭代更新:神经网络初始参数是随机的,预测也是随机的。训练过程通过迭代更新参数,调整预测结果,使其与训练数据中的统计模式相匹配。 损失函数与优化:训练过程使用损失函数来衡量模型预测与真实 token 的差距。优化算法(如梯度下降)用于调整参数,最小化损失函数,提高预测准确率。 神经网络内部结构:Transformer 包含注意力机制和多层感知器等组件,能够有效地处理序列数据并捕捉 token 之间的复杂关系。 链接:无
2025-04-12
想自学ai训练师
如果您想自学成为 AI 训练师,以下是一些相关的知识和建议: 一、AI 训练的基本概念 训练是指通过大数据训练出一个复杂的神经网络模型。这需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练过程需要较高的计算性能,能够处理海量的数据,并具有一定的通用性,以便完成各种各样的学习任务。 二、相关领域的知识 1. 机器学习:机器学习是人工智能的一个分支,是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 2. 自然语言处理:自然语言(NLP)认知和理解是让电脑把输入的语言变成有意思的符号和关系,然后根据目的再处理。自然语言生成系统则是把计算机数据转化为自然语言,是人工智能和语言学领域的分支学科。 三、学习资源和实践 您可以参考以下的一些资源和实践方式: 1. 参加相关的线上交流会,例如 3 月 26 日的自由讨论活动,其中会分享项目经验、技能以及使用 AI 工具的经验和想法。 2. 了解一些健身的 AI 产品,如 Keep(https://keep.com/)、Fiture(https://www.fiture.com/)、Fitness AI(https://www.fitnessai.com/)、Planfit(https://planfit.ai/)等,虽然这些主要是健身领域的应用,但也能帮助您了解 AI 在不同场景中的应用和创新。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-12
怎么用把AI训练成自己的东西?
要将 AI 训练成自己的东西,可以参考以下方法: 1. 像马斯克提到的,对于公开的推文数据可以合理使用,但不能使用私人的东西进行训练。同时,要注重数据的质量和使用方式,高质量的数据对于训练效果至关重要。 2. 张梦飞的方法中,例如部署 LLama Factory 时,需要添加选中“identity”数据集,将训练轮数改成 15 等,并通过一系列操作进行训练和测试。但需要注意的是,训练大模型是复杂的过程,数据集和训练参数都会影响最终效果,需要反复调试和深入学习实践。 3. 在写作方面,我们可以根据自身需求选择人类驱动为主,利用 AI 进行修改完善,或者先由 AI 生成内容再进行修改以符合自己的风格。
2025-04-11
如何训练一个AI 阅读教练
训练一个 AI 可以类比为培养一位职场新人,主要包括以下三个阶段: 1. 规划阶段:明确目标 确定 AI 的具体任务,比如结构化外文精读等。 将任务拆解为可管理的子任务。 设计每个子任务的执行方法。 2. 实施阶段:实战指导 搭建工作流程。 为每个子任务设置清晰的操作指南。 像指导新员工一样,手把手引导 AI 完成任务,并及时验证其输出质量。 3. 优化阶段:持续改进 通过反复测试和调整,不断优化 AI 的性能。 调整工作流程和 Prompt 配置,直到 AI 能稳定输出高质量的结果。 当前大模型在处理多步骤复杂任务时存在明显局限,比如在“数据分析图表、剧情游戏”或“本文结构化外文精读”等任务中,仅依靠单一 Prompt 指令难以稳定执行,现阶段的 AI 更像缺乏独立解决问题能力的职场新人,需要遵循指引和给定的流程才能完成特定任务。如果您已经完全了解上述内容,不妨自己设定一个任务目标,动手构建一个专属于自己的 AI 。
2025-04-11
模型训练的基本名词和方法
以下是关于模型训练的基本名词和方法的介绍: 基本名词: 1. 过拟合&欠拟合:过拟合和欠拟合都是不好的现象,需要加以控制以让模型达到理想效果。解决方法包括调整训练集、正则化和训练参数等,过拟合可减少训练集素材量,欠拟合则增加训练集素材量。 2. 泛化性:泛化性不好的模型难以适应其他风格和多样的创作。可通过跑 lora 模型生图测试判断泛化性,解决办法与过拟合和欠拟合类似,从训练集、正则化、训练参数等方面调整。 3. 正则化:是解决过拟合和欠拟合情况、提高泛化性的手段,给模型加规则和约束,限制优化参数,有效防止过拟合,提高模型适应不同情况的表现和泛化性。 方法: 1. 全面充分采集训练素材:例如在角色训练素材中,应包含各种角度、表情、光线等情况的素材,确保模型具有较好泛化性。 2. 图像预处理:对训练素材进行分辨率调整、裁切操作,并对训练集进行打标签处理。 3. 参数调优:尽量将训练时长控制在半小时左右,过长易导致过拟合,通过调整参数控制时长。 4. 观察学习曲线:通过观察学习曲线来调整训练素材和参数。 5. 过拟合&欠拟合处理:测试训练好的模型,观察过拟合和欠拟合问题,进一步通过调整训练素材和正则化等手段优化。 此外,在模型训练中还需注意: 1. 数据集获取渠道:可通过网上收集、购买、使用无版权问题的如古画等,原则是根据生成图的需求找对应数据集,要清晰、主体元素干净、风格统一。 2. 数据集处理:包括基础处理如裁剪保证清晰和分辨率,更重要的是写标注。 3. 设置模型触发词:可自定义,完整形式可以是一句话,建议以王 flags 模型为主。 4. 统一标注风格与应用场景:例如未来高科技 3D 天然风格,用于互联网首页图像等,并概括主题内容、描述物体特征等。 5. 利用 GPT 辅助描述并人工审核:让 GPT 按要求描述,人工审核修改。 6. 模型训练的准备与流程:完成数据集描述后进入训练流程,选择模型训练分类和数据集,创建并上传数据集压缩包,注意数据名与图片命名一致。选择训练模式和参数,新手选用普通基础模式,训练集质量重要,训练参数中总步数与训练集图片数量相关,触发词设定要避免概念混乱。
2025-04-09