Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有没有 AI bot 做意图识别的资料

Answer

以下是关于 AI bot 做意图识别的资料:

尽管意图识别在自然语言处理领域已被广泛讨论,且通过各种小规模模型处理过此任务,但随着大型模型兴起,尤其是用作智能体的 Brain 模块时,它们在意图识别方面承担了主要工作。

意图识别的定义是:当用户输入指令,指令通过感知模块传递到 Brain 模块,Brain 模块需对指令做出反应,本质上是一种分类任务,即识别并区分用户的具体意图。在单一智能体架构或复杂的多智能体系统中,意图识别都至关重要。

通过一些常见的例子,如 Siri、小爱同学及其他手机品牌搭载的智能助手,当向它们发出指令时能做出相应反应,此过程中意图识别起到关键作用。大型模型执行意图识别任务时,主要基于前期通过大量数据训练得到的模型,可能是专门针对意图识别任务训练的大型模型,也可能是通过在特定任务中微调来优化的模型,通过微调能使模型更好地适应特定领域的任务需求。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI Agent系列(二):Brain模块探究

那么,什么是意图识别呢?当用户输入指令,这些指令通过感知模块传递到Brain模块,Brain模块需要对这些指令做出反应。这个过程在本质上是一种分类任务,即识别并区分用户的具体意图。无论是在单一智能体架构还是复杂的多智能体系统中,意图识别都扮演着至关重要的角色。让我们通过一些具体的例子来更直观地理解意图识别。比如我们常用的Siri、小爱同学,以及其他手机品牌搭载的智能助手。当我们向它们发出指令时,它们能够做出相应的反应。在这个过程中,意图识别起到了关键作用。具体来说,大型模型在执行意图识别任务时,主要是基于前期通过大量数据训练得到的模型。这可以是专门针对意图识别任务训练的大型模型,也可以是通过在特定任务中进行微调来优化的模型。通过微调,可以使模型更好地适应特定领域的任务需求。

Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
coze bot小白教程
以下是关于 Coze Bot 的小白教程: 1. 搭建您的第一个 AI Bot: 设定 Bot 的人设与回复逻辑后,为 Bot 配置对应的技能,以保证其可以按照预期完成目标任务。以获取 AI 新闻的 Bot 为例,需要为它添加一个搜索新闻的接口来获取 AI 相关的新闻。 在 Bot 编排页面的技能区域,单击插件功能对应的“+”图标。 在添加插件页面,选择阅读新闻>头条新闻>getToutiaoNews,然后单击新增。 修改人设与回复逻辑,指示 Bot 使用 getToutiaoNews 插件来搜索 AI 新闻。 (可选)为 Bot 添加开场白,让用户更好地了解 Bot 的功能。开场白功能目前支持豆包、微信公众号(服务号)。 2. 测试您的 Bot:配置好 Bot 后,在预览与调试区域中测试 Bot 是否符合预期。可单击清除图标清除对话记录。 3. 发布您的 Bot: 在 Bot 的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome 此外,还有以下相关教程: 1. 张梦飞:【保姆级教程】这可能是你在地球上能白嫖到的,能力最强的超级微信机器人!一步一图,小白友好 二、注册 COZE:点击去注册账号:https://www.coze.com/ 。注册完成后登录,点击 Creat bot 进行后续操作。 三、注册 Discode:先注册:https://discord.com/ 。注册后登录,按照一系列步骤进行操作,注意保存 Coze_bot1 和 Coze_bot2 的:APPLICATION ID、TOKEN。 2. 大聪明:保姆级教程:Coze 打工你躺平 如何使用就是一把梭:先创建第一个 bot,然后不断精进,直到做出特定效果。 Step0:先跑起来,创建一个 Coze Bot,帮您查阅 Hacker News,并中文返回。打开 coze.cn/home,点创建 Bot,引入联网插件 WebPilot 后尝试联网询问新闻。
2025-03-23
sorabot怎么样
Sora 是 OpenAI 在 2024 年 2 月发布的文本到视频生成的 AI 模型。 其具有以下特点和相关情况: 足够惊艳,但关键问题仍需探讨。Sora 团队未明确表示已实现基于成熟的世界因果关系模型,而是用了世界模拟器的描述。顶尖学术圈对此较为严谨,Lecun 在世界政府峰会上不看好 Sora,指出其并非真正的世界模型,且仍会面临 GPT4 的巨大瓶颈。 自 ChatGPT 发布以来,人工智能技术标志着重大转变。Sora 能根据文本提示生成长达 1 分钟的高质量视频,具有准确解释和执行复杂人类指令的能力,能生成包含多个角色及复杂背景的详细场景,保持高视觉质量和视觉连贯性,克服了早期视频生成模型的一些限制,展示了作为世界模拟器的潜力。 基于公开的技术报告和逆向工程,有对其背景、技术、应用、挑战和未来方向的全面综述。涵盖了追溯发展、探究底层技术、描述在多行业中的应用和潜在影响、讨论主要挑战和局限性,以及对未来发展的探讨。
2025-03-20
chatbot
以下是关于 ChatBot 的相关内容: 1. 基于 COW 框架的 ChatBot 实现: 作者熊猫大侠介绍了基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信里实现。张梦飞同学写了更适合小白的使用教程,链接为:https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb 。 实现内容包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等),常用开源插件的安装应用。 正式开始前需知道:本实现思路需接入大模型 API(API 单独付费)。存在风险与注意事项,如微信端有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。有多种部署方法,如本地运行、服务器运行、Docker 的方式。 2. 打造聊天机器人“订餐机器人”: 建立自己的聊天机器人,称为“订餐机器人”,使用自动化方式收集用户提示和助手反馈来构建。用于比萨饼店接收订单。 定义“帮助函数”收集用户消息,避免手动输入。函数从用户界面收集提示并附加到称为上下文的列表中,每次使用该上下文调用模型。 模型和用户的反馈信息都会添加到上下文中,上下文会越来越长,模型据此决定下一步行动。 订餐机器人需等待收集整个订单,然后总结,并最后再次确认客户是否需要添加其他内容。若送货,需询问地址,最后收取支付款项。确保澄清所有选项、附加项和规格,以唯一地从菜单中识别出该项目。以简短、口语化和友好的方式回应。 可要求模型创建基于对话的 JSON 摘要,提交给订单系统。可对其进行定制,改变聊天机器人的行为。
2025-03-17
chatbot对话和AI搜索区别
Chatbot 对话和 AI 搜索存在以下区别: 1. 产品形态: Chatbot 主要交互是一个对话框+RAG 联网检索,如 ChatGPT、Kimi Chat 等。这类产品依赖大模型的理解能力提供问答服务,RAG 检索作为补充手段,弥补大模型在实时信息获取方面的不足。 AI 搜索产品主要交互是一个搜索框+搜索详情页,如 Perplexity、秘塔等。这类产品主要侧重点在检索,优先保证检索召回的信息质量,在首次回答的准确度方面有所要求,而对话(Chat)则作为补充步骤,方便用户对检索结果进行追问或二次检索。 2. 市场定位: 大部分产品聚焦在国内,如大模型厂商推出的 ChatBot 产品(智谱清言、Kimi Chat、百小应、海螺 AI 等),搜索厂商或创业团队推出的 AI 搜索产品(360 AI 搜索、秘塔、博查 AI、Miku 等)。 海外也有很多成熟的和新出的泛 AI 搜索产品(Perplexity、You、Phind 等),中国公司和团队也有面向全球市场的出海产品(ThinkAny、GenSpark、Devv 等)。市场定位的选择跟创始团队的背景或认知有关。 3. 搜索类型: 通用搜索:没有明显的受众倾向,任何人可以搜任何问题,都能得到一个相对还不错的搜索结果,如 Perplexity、ThinkAny。 垂直搜索:面向特定的人群或特定的领域,对特定的信息源做索引和优化,在某类问题的搜索上会有更好的结果,如 Devv 主要面向开发者人群,问编程相关的问题,搜索结果和回复准确度都比较高,问旅游或其他类型的问题,回答质量则不如通用搜索。 目前存在能联网检索的 AI,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 旨在简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。这些 AI 搜索工具的出现标志着在信息检索领域的一个重要发展,大幅提升了数据集命中预期,并为实际应用带来了更多可能性。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-07
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
人脸识别软件
以下是为您整合的关于人脸识别软件的相关信息: 在“【已结束】AI 创客松 参与同学自我介绍和分类”中,Dylan 擅长人脸识别算法和动作捕捉产品。 在“SmartBotX 模块化桌面机器人——说明文档”中,桌面客户端提供面部识别或跟踪功能的展示,可能用于安全监控、用户识别或交互式体验。 在“14、LayerStyle 副本”中,使用 YoloV8 模型可以检测人脸、手部 box 区域或者人物分割,支持输出所选择数量的通道。同时,Mediapipe 模型可以检测人脸五官,分割左右眉、眼睛、嘴唇和牙齿。
2025-04-12
本地人脸识别工具
以下为一些本地人脸识别工具的相关信息: PersonMaskUltra:为人物生成脸、头发、身体皮肤、衣服或配饰的遮罩。具有超高的边缘细节,模型代码来自。节点选项包括:face(脸部识别)、hair(头发识别)、body(身体皮肤识别)、clothes(衣服识别)、accessories(配饰识别)、background(背景识别)、confidence(识别阈值)、detail_range(边缘细节范围)、black_point(边缘黑色采样阈值)、white_point(边缘黑色采样阈值)、process_detail(设为 False 将跳过边缘处理以节省运行时间)。还有 V2 升级版 PersonMaskUltraV2,增加了 VITMatte 边缘处理方法,在 PersonMaskUltra 的基础上改变了 detail_method(边缘处理方法)、detail_erode(遮罩边缘向内侵蚀范围)、detail_dilate(遮罩边缘向外扩张范围)。 YoloV8Detect:使用 YoloV8 模型检测人脸、手部 box 区域,或者人物分割。支持输出所选择数量的通道。需在下载模型文件并放到 ComfyUI/models/yolo 文件夹。节点选项包括:yolo_model(yolo 模型选择)、mask_merge(选择合并的遮罩)。输出包括 mask(输出的遮罩)、yolo_plot_image(yolo 识别结果预览图)、yolo_masks(yolo 识别出来的所有遮罩)。 MediapipeFacialSegment:使用 Mediapipe 模型检测人脸五官,分割左右眉、眼睛、嘴唇和牙齿。节点选项包括:left_eye(左眼识别开关)、left_eyebrow(左眉识别开关)、right_eye(右眼识别开关)、right_eyebrow(右眉识别开关)、lips(嘴唇识别开关)、tooth(牙齿识别开关)。 此外,关于 AI 换脸,有开源免费的解决方案 facefusion: 本机解决方案:需要 python 环境及安装多个依赖软件,对编程知识有一定要求,且运行推理计算速度依赖 GPU,本地计算机若无 GPU 或 GPU 显存较小,执行速度缓慢,不推荐本地化安装。 云服务解决方案:可利用云厂商如阿里云的 PAI 和 AutoDL 已提供的大模型运行环境和计算能力,需产生一定费用。以 AutoDL 为例,注册后在算力市场中选择可接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。通过在算法社区查找 facefusion 镜像,选择合适的镜像启动 GPU 服务器。
2025-04-12
人脸识别
以下是关于人脸识别的相关信息: SmartBotX 模块化桌面机器人的桌面客户端提供面部识别或跟踪功能的展示,可能用于安全监控、用户识别或交互式体验。 设计:AIGC 世代的设计新范式 ver 东华.pdf 中提到了人脸识别相关技术,如 MTCNN、Centerface、LUVLi Face Alignment 等人脸检测和人脸对齐技术,以及 InsightFace 等人脸识别技术。 LayerStyle 副本中的 PersonMaskUltra 节点具有脸部、头发、身体皮肤、衣服、配饰和背景等的识别功能,还包括识别阈值、边缘细节范围、黑色和白色采样阈值等节点选项。PersonMaskUltraV2 是其升级版,增加了 VITMatte 边缘处理方法,并对边缘处理做了相关改变。
2025-04-12
意图识别
意图识别是根据输入的内容决定后续环节的流程,有点像 if/else 。从输出看,其 reason 通常为英文。可以简单理解为是一个简化版的大语言模型节点,为更精准识别,可优化选项使其更精准凝练,不行的话可换用大语言模型节点。 在自然语言处理领域,意图识别已被广泛讨论。随着大型模型兴起,尤其是用作智能体的 Brain 模块时,承担了主要工作任务。当用户输入指令,通过感知模块传递到 Brain 模块,Brain 模块需做出反应,本质上是一种分类任务,区分用户具体意图,在单一或多智能体系统中都至关重要。通过如 Siri、小爱同学等常见智能助手的例子可更直观理解。大型模型执行意图识别任务主要基于前期大量数据训练得到的模型,可通过微调适应特定领域需求。 在 Manus 多智能体通用任务系统中,意图识别从用户输入中提取关键词和任务类型,引导用户补充信息以明确需求。
2025-03-12
产品经理在设计AI产品功能时候,需要设计意图识别吗?怎么设计呢
产品经理在设计 AI 产品功能时,需要设计意图识别。以下是关于意图识别的相关内容: 意图识别的定义:当用户输入指令,这些指令通过感知模块传递到 Brain 模块,Brain 模块需要对这些指令做出反应。这个过程在本质上是一种分类任务,即识别并区分用户的具体意图。无论是在单一智能体架构还是复杂的多智能体系统中,意图识别都扮演着至关重要的角色。 意图识别的实现方式: 1. 通过准备特定于任务的数据集,然后利用这些数据对模型进行 Finetuning,以提升其在特定意图识别任务上的表现。这个过程涉及到在预训练模型的基础上进一步训练,以调整模型参数,使其更适应特定的任务需求。 2. Prompttuning,这种方法不需要对模型的参数进行大规模调整。而是通过精心设计的提示词来引导模型,使其能够识别和响应用户的意图。这种方法的优势在于其灵活性和快速适应性,能够在不改变模型参数的情况下,迅速适应新的任务或领域。 这两种方法各有优缺点:微调能够提供更高的准确性,但需要较多的训练数据和计算资源;而提示词调优则在创造性和灵活性方面表现更为突出。 在使用大型模型进行意图识别时,需要注意一些潜在的问题: 1. 由于意图识别在智能系统中扮演着守门人的角色,如果其准确性不足,整个系统的后续环节,包括记忆、规划和反思等,都可能受到影响,无法正常发挥作用。 2. 在落地设计时,意图识别通常与特定的业务场景紧密相关,如果脱离了具体的业务需求,意图识别将失去其实际意义。因此,在设计意图识别系统时,必须将其与业务需求紧密结合,确保其能够准确地理解和响应用户的需求。如果意图识别脱离了业务背景,那么可能不如利用模型的泛化能力去执行更基本的意图识别任务。 以下是一个使用 prompt 来设计意图识别的例子:在上述使用提示词进行意图识别的例子中,提示词对用户的指令进行了分类,以识别不同的意图。然后,根据这些识别出的意图,系统执行相应的动作。最终,系统会输出一个 JSON 格式的结果,这通常包含了对用户指令的解析和响应。 在未来的 AI 学习产品中,除了拥有大模型之外,还需要拥有其他的基础设施,包括但不仅限于具备学习任务规划能力的小参数规模模型、意图识别模型、多模态交互模型、搜索引擎、既有的知识库等等。
2025-03-06
有生成示意图的好工具么?
以下是一些生成示意图的好工具: 1. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 2. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 3. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 4. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 5. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-12
意图识别如何通过提示词实现
通过提示词实现意图识别通常有以下几种方式: 1. 准备特定于任务的数据集,对模型进行 Finetuning,以提升其在特定意图识别任务上的表现。但此过程需要较多训练数据和计算资源。 2. 使用 Prompttuning 方法,通过精心设计的提示词来引导模型识别和响应用户意图。这种方法具有灵活性和快速适应性。 3. 对用户的指令通过提示词进行分类,以识别不同的意图,然后根据识别出的意图执行相应动作,最终输出 JSON 格式的结果。 4. 对用户提问进行分类,如分为导航类、信息查询类、交易类、本地信息类等,匹配更准的信息源和更好的回复提示词。例如搜索“笔记本电脑”,提取出“shopping”意图,挂载相关电商平台信息源进行更小范围搜索,并加载匹配的提示词模板控制大模型回答内容。 5. 利用大模型提供的 Function Calling 能力进行意图识别。 但目前主流的实现方案,不管是成熟的大模型还是微调的小模型,准确度都不够高。
2025-02-11
举例说明,意图和FAQ训练的区别
意图和 FAQ 训练是两种不同的概念。 意图训练主要侧重于理解用户的核心意图或目的。例如,在一个客服场景中,用户的意图可能是查询产品信息、寻求技术支持或进行投诉等。通过对大量的用户交互数据进行分析和学习,模型能够识别出这些不同的意图类别。 FAQ 训练则侧重于常见问题及其对应的标准答案。比如常见的“产品如何退换货”“售后服务的联系方式是什么”等问题,以及相应的准确回答。 总的来说,意图训练更注重对用户目的的分类和理解,而 FAQ 训练更侧重于对特定常见问题的准确回答。
2025-01-13
意图和FAQ最明显的区别是什么
意图和 FAQ 最明显的区别在于:意图通常指的是用户行为背后的目的或期望,它更侧重于理解用户的深层需求和动机。而 FAQ(常见问题解答)则是预先准备好的一系列常见问题及其对应的标准答案,主要用于快速回答用户可能提出的一般性问题。 总的来说,意图关注的是挖掘用户潜在的想法和目标,FAQ 则是针对常见问题提供现成的解答。
2025-01-13