Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

boosting 模型是什么意思

Answer

Boosting 模型是一种集成学习方法,主要包括以下两种常见类型:

  1. Bagging(Bootstrap Aggregating):通过多次有放回抽样生成多个数据集,训练多个相同类型的模型(如决策树、多项式等),对于回归任务将多个模型的预测结果取平均,对于分类任务通过多数投票来决定最终的分类结果,以减少机器学习模型的方差,提高泛化能力。其核心步骤包括从原始数据集中有放回地抽取多个子集,每个子集用于训练一个独立的模型,最后集成这些模型的结果。
  2. AdaBoost(Adaptive Boosting):主要用于分类问题,也可用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器的准确率仅略高于随机猜测,例如在二分类问题中可能略高于 50%。在 AdaBoost 中,强学习器通常是具有高准确率、能很好泛化到新数据的复杂模型,如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。

此外,在 Coze 上,GLM 模型和 MoonShot 模型因对结构化提示词的良好理解适合处理精确输入和输出任务,豆包系列模型在角色扮演和工具调用方面表现出色,将这三种模型结合在工作流或多 Agent 中可实现优势互补。

Content generated by AI large model, please carefully verify (powered by aily)

References

[算法学习] Bootstrap Aggregating 分类/回归

Bagging(Bootstrap Aggregating)是一种集成学习方法,主要用于减少机器学习模型的方差,并提高其泛化能力。Bagging的核心思想是通过多次抽样生成多个数据集,训练多个模型,并将这些模型的结果进行平均(或投票)来提高整体预测的稳定性和准确性。[heading1]Bagging的定义与核心[content]Bootstrap抽样:从原始数据集中有放回地抽取多个子集。每个子集的大小与原始数据集相同,但由于是有放回的抽样,可能会出现重复样本。训练多个模型:每个子集都用于训练一个独立的模型。这些模型通常是相同的模型类型(如决策树,多项式等)。集成结果:对于回归任务,将多个模型的预测结果取平均;对于分类任务,通过多数投票来决定最终的分类结果。

[算法学习] Adaptive Boosting 分类/回归

AdaBoost(Adaptive Boosting),即自适应增强算法,是一种集成学习算法,主要用于分类问题,也可以用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器(Weak Learner)弱学习器是集成学习中的一个概念。在机器学习中,学习器通常被分类为强学习器(Strong Learner)和弱学习器。两者的基本区别有:强学习器:强学习器通常指的是具有高准确率的模型,能够很好地泛化到新的数据上。它们可能是复杂的模型,比如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。弱学习器:弱学习器的准确率仅略高于随机猜测。例如,在二分类问题中,如果随机猜测的准确率是50%,那么弱学习器的准确率可能只是略高于50%,比如51%。弱学习器通常是简单的模型,比如决策树桩(Decision Stumps),它们只考虑单个特征的阈值来做出预测。(比如月收入高于30k,就有可能购买一个空气净化器)

蓝衣剑客:四万字长文带你通学扣子

在结束第五章节之前,我们需要来考虑下模型选择的问题。在Coze上,GLM模型和MoonShot模型因其对结构化提示词的良好理解而受到青睐。这些模型能够较为准确地解析和响应那些格式规范、结构清晰的指令,使得它们非常适合处理需要精确输入和输出的任务。另一方面,豆包系列模型则在角色扮演和工具调用方面表现出了特别的亲和力。这些模型不仅能够识别用户的意图,还能够智能地选择合适的工具或服务来执行用户的指令,从而实现更加流畅和直观的人机交互。将这三种模型结合在一个工作流或多Agent中,可以实现优势互补,创造出一个强大而灵活的工作流或多Agent。例如,GLM和MoonShot模型可以处理语言理解和生成的任务,而豆包模型则负责工具的调用和用户意图的识别,这样的搭配能够确保工作流的高效运行和用户需求的准确响应。

Others are asking
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,部分人觉得大语言模型(LLM)具有 AGI 潜力,但也有人反对。通用人工智能被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。例如,OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于一些原因被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。
2025-04-10
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),通常指一种能够完成任何聪明人类所能完成的智力任务的人工智能系统,能够在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 是朝着 AGI 迈出的巨大一步。Sam Altman 认为确保 AGI 造福全人类是使命,人工通用智能是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-04-10
API是什么意思有什么用
API 是应用程序编程接口(Application Programming Interface)的缩写。它是软件之间进行交互和数据交换的接口,使得开发者能够访问和使用另一个程序或服务的功能,而无需了解其内部实现的详细信息。 API 就像是一个信差,接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 APIKey 是一种实现对 API 访问控制的方法,通常是一串字符串,用于身份验证和访问控制。当开发者或应用程序尝试通过 API 与另一个程序或服务交互时,APIKey 作为请求的一部分被发送,以证明请求者具有调用该 API 的权限。APIKey 帮助服务提供商识别调用者身份,监控和控制 API 的使用情况,以及防止未经授权的访问。 要使用 API,通常需要去官网寻找 API 文档,API 的规则一般会写在网站的开发者相关页面或 API 文档里。例如,TMDB 的搜索电影 API 文档的网址是:https://developer.themoviedb.org/reference/searchmovie 。在 API 文档中,会详细告知如何使用相应的 API,包括请求方法、所需的查询参数等。您可以在文档中进行相关配置和操作。 登录网站寻找 Apikeys 创建新的密钥(记得保存好、不要泄露)。使用 APIKEY 可能需要单独充值,一共有两种模式可以使用: 1. 使用官方的 key 网站:https://platform.openai.com/apikeys 创建好您的 key 后记得复制保存。 2. 如果觉得充值比较麻烦可以考虑用第三方的网站:https://www.gptapi.us/register?aff=WLkA ,这个充值起来方便一些,模型选择也可以多一些。
2025-03-29
agi 是什么意思
AGI 指通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 部分人认为大语言模型(LLM)具有 AGI 潜力,例如 ChatGPT 背后的技术,而 LeCun 反对这一观点。 OpenAI 曾有关于实现 AGI 的计划,如原计划在 2026 年发布的 Q下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。
2025-03-26
AI infra是什么意思?
AI Infra 通常指的是人工智能基础设施。随着越来越多的 AI 模型和产品的出现,AI Infra 所涵盖的工具变得愈发重要,这些工具能够帮助构建、改进和监控 AI 模型及产品。 例如,硅基流动致力于打造大模型时代的 AI 基础设施平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。 在一些相关的产品和服务中,如 EdenAI 帮助 AI 创作者为其产品选择合适的 AI API 并在它们之间切换,Langdoc 能快速创建和部署 LLM 插件或应用程序,Langfuse 可追踪和调试复杂的 LLM 应用程序,这些都属于 AI Infra 的范畴。
2025-03-26
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。像 ChatGPT 这样的产品就是由致力于 AGI 的 OpenAI 研发的。同时,Sam Altman 也认为确保 AGI 造福全人类是重要使命,AGI 可以被看作是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-03-22