Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能视阈下高校设计学科教学 改革的新路径研究

Answer

以下是为您整合的相关内容:

在高校设计学科教学改革方面,相关法案提到了对人工智能领域的支持,包括支持跨学科研究、教育和培训项目,以促进学生和研究人员在人工智能方法和系统方面的学习,并培养相关领域专家的跨学科视角和合作。同时,在高等教育中,有人认为大型语言模型(LLMs)可能会对其产生显著的积极影响,特别是提升人文学科的重要性。LLMs 具有深度且内在的文本属性,与大学人文学科课程所强调的技能和方法直接相关。此外,还有法案涉及推动机器学习的发展,支持跨多个机构和组织的人工智能及相关学科的跨学科研究和开发。

Content generated by AI large model, please carefully verify (powered by aily)

References

【法律法规】《2020年国家人工智能倡议法案》.pdf

(9)MACHINELEARNING.—The(b)INITIATIVE ACTIVITIES.—In carrying out the Ini-(4)Support for interdisciplinary research,edu-8cation,and training programs for students and re-9searchers that promote learning in the methods and10systems used in artificial intelligence and foster11interdisciplinary perspectives and collaborations12among subject matter experts in relevant fields,in-13cluding computer science,mathematics,statistics,14engineering,social sciences,psychology,behavioral15science,ethics,security,legal scholarship,and other16disciplines that will be necessary to advance artificial17intelligence research and development responsibly.18

教育:一个历史老师用GPT给学生讲课

[title]教育:一个历史老师用GPT给学生讲课[heading3]Teaching will get weirder — and that’s probably aIn the long term,I suspect that LLMs will have a significant positive impact on higher education.Specifically,I believe they will elevate the importance of the humanities.If this happens,it will be a shocking twist.We’ve been hearing for over a decade now that the humanities are in crisis.When faced with raw data about declining enrollments and majors like[this](https://www.theatlantic.com/ideas/archive/2018/08/the-humanities-face-a-crisisof-confidence/567565/)and[this](https://www.newyorker.com/magazine/2023/03/06/the-end-of-the-english-major),it is difficult not to agree.From the perspective of a few years ago,then,the advent of a new wave of powerful AI tools would be expected to tip the balance of power,funding,and enrollment in higher education even further toward STEM and away from the humanities.But the thing is:LLMs are deeply,inherently textual.And they are reliant on text in a way that is directly linked to the skills and methods that we emphasize in university humanities classes.What do I mean by that?One of the hallmarks of training in history is learning how to think about a given text at increasingly higher levels of abstraction.We teach students how to analyze the genre,cultural context,assumptions,and affordances of a primary source — the unspoken limits that shaped how,why,and for whom it was created,and what content it contains.

【法律法规】《2020年国家人工智能倡议法案》.pdf

(9)MACHINELEARNING.—The(B)describes how the agencies carrying(viii)in consultation with the Council(4)in carrying out this section,take into con-(b)FINANCIAL ASSISTANCE TO ESTABLISH(2)ARTIFICIALINTELLIGENCE INSTITUTES.—(D)supports interdisciplinary research and16development across multiple institutions and or-17ganizations involved in artificial intelligence re-18search and related disciplines,including phys-19ics,engineering,mathematical sciences,com-20puter and information science,robotics,biologi-21cal and cognitive sciences,material science,so-22cial and behavioral sciences,cybersecurity,and23technology ethics;24VerDate Sep 11 2014 23:31 Mar 25,2020 Jkt 099200 PO 00000 Frm 00024 Fmt 6652 Sfmt 6201 E:\BILLS\H6216.IH H6216p amtmann on DSKBC07HB2PROD with BILLS25•HR 6216 IH

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
北大清华伯克利等知名高校最新AI研究成果
以下是北大清华伯克利等知名高校的最新 AI 研究成果: 国内方面: 清华大学的自然语言处理实验室资助了 OpenBMB 项目,催生了 MiniCPM 项目,这是可以在设备上运行的小型<2.5B 参数模型,其 2.8B 视觉模型在某些指标上仅略低于 GPT4V。 阿里巴巴最近发布了 Qwen2 系列,社区对其视觉能力印象深刻,能完成从具有挑战性的 OCR 任务到分析复杂的艺术作品等。 国外方面: Stability AI 发布的 Stable Video Diffusion 是第一个能够从文本提示生成高质量、真实视频的模型之一,并且在定制化方面取得了显著的进步。今年 3 月,他们推出了 Stable Video 3D,该模型经过第三个对象数据集的微调,可以预测三维轨道。 OpenAI 的 Sora 能够生成长达一分钟的视频,同时保持三维一致性、物体持久性和高分辨率。它使用时空补丁,类似于在变压器模型中使用的令牌,但用于视觉内容,以高效地从大量视频数据集中学习。此外,Sora 还使用了其原始大小和纵横比的视觉数据进行训练,从而消除了通常会降低质量的裁剪和缩放。 Google DeepMind 的 Veo 将文本和可选图像提示与嘈杂压缩视频输入相结合,通过编码器和潜在扩散模型处理它们,以创建独特的压缩视频表示。然后系统将此表示解码为最终的高分辨率视频。 此外,Geoffrey Hinton 让“深度学习”从边缘课题变成 Google 等网络巨头仰赖的核心技术。Hinton 和他的团队让 CIFAR 获得丰厚回报,深度学习也成为目前的主流。Hinton 冷静、谦逊与公平的态度为 NCAP 建立了良好的开放合作氛围,推进了世界的 AI 研究工作。 关于未来研究方向的参考资料包括: 人工智能技术与安全研究:DeepMind、OpenAI、MIT、Stanford、Berkeley 等机构的论文,“AI Index”(斯坦福大学发布)、OpenAI 技术博客、Google AI Blog 等技术报告,专家著作如 Nick Bostrom《Superintelligence》、Stuart Russell《Human Compatible》等。 经济与社会变迁:IMF、世界银行、OECD、WEF(世界经济论坛)的未来就业与技术报告,未来学与社会预测如 Herman Kahn、Ray Kurzweil《The Singularity is Near》等,科技史与社会影响方面如 Joseph Schumpeter(创新与经济周期)、Carlota Perez(技术革命与金融资本),以及经济学者对产业革命的历史演化研究。 政治与国际关系:联合国关于 AI 和数字治理的政策文件、欧盟 AI Act 的立法草案与相关研究,前沿智库与研究中心如 Future of Humanity Institute、Brookings、RAND Corporation 等,军事与国防方面如美国国防部和 NATO 对 AI 的战略规划,中国、欧盟、日本等国家的 AI 国家政策及军民融合案例。
2025-03-24
高校如何自己本地部署DEEPSEEK
高校本地部署 DEEPSEEK 可以参考以下内容: 1. 了解相关平台服务差异,如 DLC、DSW 和 EAS 等模型部署平台服务的不同。 2. 如果拥有云服务器,可以进行本地部署,但要注意满血版本地部署的实际情况。 3. 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 5. 模型试用可以使用 postman,通过修改接口和复制文档中的内容进行在线调试,发送请求查看状态码,根据模型名称和相关要求输入内容进行试用。 6. 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 7. 实战演练 DeepSeek R1 满血版快速部署和蒸馏训练。 以上信息仅供参考,具体操作可能会因实际情况有所不同。
2025-02-27
我是一名高校新媒体工作人员,由于文字能力一般,需要能力较强的ai文本工具,用于撰写公文,新闻稿,公众号推文,总结简报等。请推荐至少5个,并进行对比分析
以下为您推荐至少 5 个适用于高校新媒体工作人员的 AI 文本工具,并进行对比分析: Copy.ai: 功能强大,提供丰富的新闻写作模板和功能。 可快速生成新闻标题、摘要、正文等内容,节省写作时间,提高效率。 Writesonic: 专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能。 智能算法能根据用户提供信息生成高质量新闻内容,适合新闻写作和编辑人员。 Jasper AI: 人工智能写作助手,写作质量较高,支持多种语言。 虽主打博客和营销文案,也可用于生成新闻类内容。 Grammarly: 不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 QuillBot: AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,同时保持原意。 秘塔写作猫: 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。 支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作: 是智能写作助手,能应对多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等。 支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作: 由腾讯 AI Lab 开发,能探索用 AI 技术提升写作者的写作效率和创作体验。 选择工具时,您可根据具体需求(如文档类型、个人偏好等)进行考虑。例如,若主要需求是生成新闻类内容,Copy.ai、Writesonic 和 Jasper AI 可能更适合;若还需兼顾排版和语法检查,Grammarly 和 QuillBot 是不错的选择;若注重中文内容的改写,秘塔写作猫、笔灵 AI 写作和腾讯 Effidit 写作可优先考虑。
2025-02-26
目前各大高校有哪些场景会实用算力
目前各大高校实用算力的场景可能包括以下方面: 1. 科研计算:如在物理学、化学、生物学等学科的研究中,进行复杂的模拟和数据分析。 2. 人工智能研究:包括模型训练、算法优化等。 3. 图形和图像处理:例如在设计、动画制作等专业中的应用。 4. 数据分析和处理:用于处理大规模的数据集,以支持学术研究和决策制定。 需要注意的是,具体的应用场景会因高校的学科设置、研究方向和教学需求而有所不同。
2025-02-19
职场人士如果高校利用AI
对于职场人士高效利用 AI ,以下是一些方面和建议: 学生和应届毕业生: 职业选择和规划:通过了解 AI 技术在不同职业中的应用,评估自身兴趣和技能,选择合适职业路径并制定详细规划。 技能提升:依据职业目标获取个性化学习建议和资源,提升在 AI 领域的技能,为就业做准备。 职场新人和职业转换者: 职业发展指导:根据自身职业目标和市场需求制定发展计划,明确短期和长期目标。 职业转型支持:对于希望从其他领域转型到 AI 相关领域的从业者,获取详细转型路径和必要技能培训资源,实现顺利转型。 企业: 人才招聘和培养:评估应聘者的 AI 技能水平,选择合适候选人,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 员工职业发展:为员工制定个性化职业发展计划,提供持续职业指导和培训,提升员工职业满意度和留任率。 教育机构: 职业指导服务:将相关产品作为学生职业指导的一部分,帮助学生了解 AI 领域职业机会和发展路径,提升就业率。 课程设计和优化:根据市场需求和学生职业规划优化课程设置,提供更有针对性的 AI 技能培训。 职业咨询师: 辅助工具:使用相关产品为客户提供更精准的职业规划建议和技能评估,提升咨询服务质量和效率。 数据支持:基于产品提供的市场数据和职业趋势分析,为客户提供更全面和前瞻性的职业指导。 此外,还有一些优秀的 AI 编程教程和实践分享,例如 Nicholas Carlini 的博文“How I Use 'AI'”,其中提到了使用 LLM 进行编程和研究的实例,包括构建完整的 Web 应用、学习新技术、开启新项目、简化代码、单调任务的自动化、提升用户专业度和效率、API Reference、搜索、解决一次性的任务以及修复常见错误等方面。
2025-02-09
想要对deepseek进行提问需要什么技巧吗?有没有什么高校组织给出的方案?
对 DeepSeek 进行提问时,以下是一些技巧: 1. 身份定位技巧:目的是让 AI 理解您的背景和专业水平。例如,差的表述是“帮我写一篇营销方案”,好的表述是“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 2. 场景描述技巧:提供具体的应用场景和限制条件。比如,差的表述是“写一篇新品发布文案”,好的表述是“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 3. 结构化输出技巧:指定具体的输出格式和内容结构。例如,差的表述是“分析最近的新能源汽车销量数据”,好的表述是“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 4. 分步骤提问技巧:将复杂问题拆解为可管理的小任务。比如,差的表述是“怎么做短视频运营?”,好的表述是“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 5. 反馈优化技巧:通过追问获得更精准的答案。例如,第一轮“帮我做一份产品分析报告”,追问 1:“内容太专业了,能用更通俗的语言解释吗?”追问 2:“可以增加一些具体的用户案例来支撑观点吗?” 6. 深度思考引导技巧:目的是获得更深入的分析和见解。
2025-02-07
学习WaytoAGI的最佳路径是什么
学习 WaytoAGI 的最佳路径包括以下几个方面: 1. 了解最新的 AI 技术:WaytoAGI 像免费的“技术期刊”,能让您了解最新动态,还能教授实用技能,且开源免费。 2. 线上共学:通过线上共学方式,手把手教您应用 AI 技术,无论您是小白还是有一定基础,都能找到适合自己的学习路径。 3. 找到志同道合的队友:如果您想创业、做副业,或者只是想找对 AI 感兴趣的伙伴一起做事,WaytoAGI 是很好的平台。 使用 WaytoAGI 的方法: 1. 点开链接就能看:无需注册和花钱,直接点击链接:点击。 2. 想看啥就看啥:比如想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分,内容分类清晰。 3. 有问题还能问:看了还有不懂的,或者想跟别人交流,可以加入社群讨论。 此外,WaytoAGI 还有整活区,这里不是系统性学习的地方,而是一起做有趣事情的游乐场。在这里,您不用证明想法“有什么用”,可以尽情发挥对 AI 最天马行空的想象,鼓励把 AI 玩出新花样。
2025-04-10
学习路径文档
以下是为您提供的新手学习 AI 的路径文档: 首先,了解 AI 基本概念。建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 然后,开始 AI 学习之旅。在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 接着,选择感兴趣的模块深入学习。AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。特别建议您掌握提示词的技巧,它上手容易且很有用。 之后,进行实践和尝试。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 最后,体验 AI 产品。与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 此外,雪梅 May 的 AI 学习经验也值得参考。May 发现自己的学习路径是:迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。特别是学习 coze 的路径:输入→模仿→自发创造,这是她真实实践下来之后发现的学习规律。May 还提到,虽然费曼学习法告诉我们,学习最好的方式是教会别人,但在一开始学习 AI 时,自学和输入为主也是可行的。回想起来,如果能量更足、更有勇气,可以更早地开始输出倒逼输入。不过不要为难自己,只要迈开脚步,就是进步。
2025-04-09
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
提供一个全面的AI学习路径
以下是为您提供的全面的 AI 学习路径: 首先,了解 AI 的基础概念是至关重要的。这包括对机器学习、深度学习、自然语言处理等核心领域的基本认识。 在掌握基础概念后,深入学习数学知识,如线性代数、概率论、微积分等,这些是理解 AI 算法的基石。 接着,学习编程语言,如 Python,它在 AI 开发中被广泛应用。 然后,学习常见的机器学习算法,如决策树、聚类算法等,并通过实践项目加深理解。 对于深度学习,要掌握神经网络的原理和常见模型,如卷积神经网络、循环神经网络等。 同时,关注最新的 AI 行业资讯,了解前沿技术和应用案例。 参与相关的实践活动,如模型创作大赛等,将理论知识应用到实际中。 此外,利用丰富的学习资源,如文章、教程、工具推荐等,不断提升自己的能力。 “通往 AGI 之路”是一个致力于人工智能学习的中文知识库和社区平台,由开发者、学者和 AI 爱好者共同参与建设。它提供了系统全面的学习路径,涵盖从基础概念到实际应用的各个方面,包括丰富的学习资源、定期组织的活动等。您可以通过以下渠道获取更多信息: 网站: 知识库介绍说明:https://waytoagi.feishu.cn/wiki/BE57wlWV2iDkOvkbYIockX11nTC 社区业务:https://waytoagi.feishu.cn/wiki/PhZwwGR7jinzLVkqohOc7oofnzf 公众号:通往 AGI 之路 Bilibili:https://space.bilibili.com/259768893 小红书:https://www.xiaohongshu.com/user/profile/6457d2e4000000001f030dbe Twitter:https://twitter.com/WaytoAGI
2025-04-01
我是一名0基础的AI使用者,如果我需要熟练的搭建自己coze来完成一些业务工作,我的学习路径是什么样的?可以为我推荐一个学习计划,包括学习的资料获取途径和资料推荐吗?
以下是为您推荐的从 0 基础学习搭建自己的 Coze 来完成业务工作的学习路径和学习计划: 学习路径: 1. 了解 Coze AI 应用的背景和现状,包括其发展历程、适用场景和当前的局限性。 2. 熟悉创建 AI 应用的操作界面,包括学习业务逻辑和用户界面的搭建。 3. 掌握前端和后端的基础知识,了解其在 Coze 应用中的作用。 4. 学习容器的操作和页面布局技巧。 学习计划: 1. 资料获取途径:可以通过飞书知识库获取相关学习资料。 2. 资料推荐: “90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包含智能纪要和智能章节,详细介绍了 Coze 应用的创建过程、界面讲解、前端与后端基础及界面组件布局、容器操作与页面布局等内容。 (筹划中)「Agent 共学」之“两天学会用 AI 建站”,其中的共学日程表可能会提供相关的学习安排和指导。 在学习过程中,建议您重点熟悉桌面网页版的用户界面,按照资料中的步骤逐步实践,遇到问题及时查阅资料或寻求帮助。祝您学习顺利!
2025-03-31
学习路径
以下是关于学习 AI 的不同方面的学习路径: LLM 开发: 1. 掌握深度学习和自然语言处理基础,包括机器学习、深度学习、神经网络等基础理论,以及自然语言处理中的词向量、序列模型、注意力机制等。相关课程有吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理,包括 Transformer 模型架构及自注意力机制原理,以及 BERT 的预训练和微调方法。掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调,包括大规模文本语料预处理,使用 LLM 预训练框架如 PyTorch、TensorFlow 等,以及微调 LLM 模型进行特定任务迁移。相关资源有 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署,包括模型压缩、蒸馏、并行等优化技术,模型评估和可解释性,以及模型服务化、在线推理、多语言支持等。相关资源有 ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习,结合行业场景进行个性化的 LLM 训练,分析和优化具体 LLM 工程案例,研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态,关注顶会最新论文、技术博客等资源。 AI 技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 AI 应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 AI 基础入门: 1. 根据电脑的硬件情况和自身财力选择合适的开始方式,如本地部署(电脑是 M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑)、在线平台(分为在线出图和云电脑)或配台电脑(不建议一开始就配主机)。 2. 必学、必看内容是基础课,主要解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供不同的炼丹工具的安装教程;正式的内容部分分为数据集预处理、模型训练以及模型调试及优化三个部分。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-31