Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请问修复旧照片怎么处理?

Answer

修复旧照片可以按照以下步骤进行处理:

  1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章【Stable Diffusion】图片高清化+面部修复+一键抠图,一些你不知道的事儿
  2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。stableSR 是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章【Stable Diffusion】超清无损放大器 StableSR
  3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写,以免对原图产生干扰。
  4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,可在显存不够的情况下将图片放大到足够倍数。
  5. 对于复杂的照片,可先在 ps 里进行角度调整和照片裁切,然后按照上述步骤上色。若直接上色效果不佳,比如像加了黄色滤镜或年代感太强,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。比如从网上找相关照片让 AI 匹配色调,加入第二个 controlnet 控制颜色,使用 t2ia_color 的模型,给简单的关键词,如“蓝天、绿树、灰石砖”。
  6. 修复时必须使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stable-diffusion-webui/models/Stable-Diffusion/文件夹中。StableSR 模块(约 400M 大小)放入 stable-diffusion-webui/extensions/sd-webui-stablesr/models/文件夹中。VQVAE(约 750MB 大小)放在 stable-diffusion-webui/models/VAE 中。
Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】用AI给老照片上色,岁月不改它模样

[title]【SD】用AI给老照片上色,岁月不改它模样将照片放入到后期处理中,使用GFPGAN算法将人脸变清晰,不知道这个功能的可以参考我这篇文章——[【Stable Diffusion】图片高清化+面部修复+一键抠图,一些你不知道的事儿](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487422&idx=1&sn=9cdf7ef37c2acb3c0fc3328d0ba8af74&chksm=c251597af526d06c921ea6728cb2a32bdf1d5f699e19d6ba13b849994e4d01af8a5144132aad&scene=21#wechat_redirect)。这个步骤,可以将我们的五官进行重绘,但是却没有办法将照片中的头发、衣服等其他元素变清晰。所以,接下来我将图片再发送到图生图当中,打开stableSR脚本,放大两倍。这个放大插件是所有插件中对原图还原最精准的,也是重绘效果最好的,不知道的朋友可以参考我的这篇文章——[【Stable Diffusion】超清无损放大器StableSR](http://mp.weixin.qq.com/s?__biz=MzkzMzIwMDgxMQ==&mid=2247487403&idx=1&sn=cbb96534fa6f58c37cf9fc64bc7ade0c&chksm=c251596ff526d0792b4bba0e21b69427b23e780824bdc75b22f1073e8bad6f61f30199fc8344&scene=21#wechat_redirect)。切换到sd2.1的模型进行修复,vae选择vqgan,提示词可以什么都不写,以免对原图产生干扰。

【SD】用AI给老照片上色,岁月不改它模样

[title]【SD】用AI给老照片上色,岁月不改它模样启用MutiDiffusion插件,不开放大倍数,仅使用分块渲染的功能,能帮助我们在显存不够的情况下,将图片放大到足够的倍数。好了,经过一顿操作,我们就将这张图片处理完成了。对比一下看看,之前的黑白照片和经过上色高清化完成之后效果。同样的步骤,又还原了一张我妈妈的照片。在问到她当时穿的什么颜色衣服的时候,她记得可清楚了,想都没想就告诉我说是绿色的。这两张还算容易的,接下来就遇到比较棘手的照片了。比如这一张,是我外公外婆带着我妈和我舅舅。外公走得更早,我甚至都没见过一面,只有这些照片还记录着他存在的痕迹。而这张照片也有些年头了,一直被外婆好好保存着。人物多、场景复杂,像素非常的低,使得这张照片处理起来难度很大。我首先在ps里面进行了一下角度的调整和照片的裁切,然后使用刚才的步骤进行上色,但是直接上色的结果有点像是加了一层黄色滤镜,有颜色但是年代感还是太强了。而太具体的颜色指定,又容易让画面污染严重,因为内容实在太多了,光是指定衣服就得十来个颜色提示词,AI能分辨得清才怪。所以我决定放弃人物服装的颜色指定,只给一个场景方向,剩下的交给AI去自行决定。于是,我从网上找到了一张仙人洞的照片,让AI去帮我匹配色调。加入第二个controlnet来控制颜色,使用的是t2ia_color的模型。关键词只给了:蓝天、绿树、灰石砖这么简单的几个词。颜色终于正常了,最后经过脸部的修复和放大,得到了最终的效果。对比一下前后的效果,那个流逝的时光仿佛又回来了,外婆看到后也非常高兴,在微信上连连夸赞。

【SD】超清无损放大器StableSR

[title]【SD】超清无损放大器StableSR这个修复必须要使用StabilityAI官方的Stable Diffusion V2.1 512 EMA模型,放入stable-diffusion-webui/models/Stable-Diffusion/文件夹中。然后是StableSR模块(约400M大小)放入stable-diffusion-webui/extensions/sd-webui-stablesr/models/文件夹中。还有一个VQVAE(约750MB大小)放在你的stable-diffusion-webui/models/VAE中。这三个文件我会放在百度云盘的链接中。安装好之后,我们用一张从网上找的神仙姐姐的照片来做一个测试,这张图片的分辨率为512x768。放大之后看是比较模糊的,脸上有很多噪点,头发丝也糊在一起了。我们先使用“Ultimate SD upscale”脚本放大看一下,哪怕是重绘幅度只开到0.1,也可以看到人物细节的变化,比如嘴角、眼睛等部位,而且整个人磨皮很严重,失去了真实感。重绘幅度开到0.4之后,基本上就变了一个人了。所以,想要还原一些老照片,追求最大保真度的话,用重绘的方法是不太好的。接下来,我们再试验一下“后期处理”的放大方法,缩放3倍。眼神变得更锐利了一些,但是头发还是模糊的,因为原图就很模糊。最后,我们再测试一下StableSR的放大,先将大模型和VAE分别调整为我们刚才下载安装的“Stable Diffusion V2.1 512 EMA ”和“VQGAN vae”。打开脚本下拉,选择“StableSR”,模型选择和大模型对应的这个,放大倍数为3,下面勾选“pure noise”。

Others are asking
高清视频修复ai工具
以下为一些高清视频修复的 AI 工具: 1. 星流一站式 AI 设计工具: 高级模式下,基础模型允许使用更多的微调大模型,图片参考允许使用更多的图像控制功能。星流基础大模型下,增加了 tile 分块与 softedge 线稿。 高清分辨率修复:利用算法对初步生成的图像进行简单的图生图高清放大(目前仅支持基础模型 xl 和 1.5 模型)。 放大算法影响图像放大后的图像质量,重绘幅度与初步生成的图像的相似度,其他参数默认即可。 采样器和采样步数会影响出图质量和生成时间,随机种子和 CFG Scale 也有相应作用,脸部/手部修复利用算法对人像的脸部或者手部进行修复。 2. Pika: 发布 Pikaddition 能力,可以将用户图片物体融合到拍摄视频,不会改变原视频且保证新视频创意效果自然。 支持用户自行上传视频(视频时长需 5s 以上),支持物体、人物(卡通、真人)图像,有 15 次免费尝试机会。 使用方法:进入 Pika 官网,页面底部选择 Pikaddition,上传视频、图像,输入文字描述提示词,点击确认即可。 地址:https://pika.art/ 3. Topaz Labs: 推出 Starlight 首个用于视频修复的扩散模型,只需输入素材,AI 可自动降噪、去模糊、放大、抗锯齿,无需手动调整与参数调整,达成专业视频高清修复。 目前正在 Beta 中。 地址:https://www.topazlabs.com/ 4. Tusiart: 具有高清修复功能,在本来设置的图像分辨率基础上,让图像分辨率变得更加精细。 有 ADetailer 面部修复插件。
2025-04-14
旧照片修复
旧照片修复是 AI 绘画领域中的一项重要应用。以下是关于旧照片修复的一些相关信息: 以往解决旧照片修复问题往往需要搭建极为复杂的工作流,现在 GPT 4O 只需要一句话就可以实现。 图像放大修复是 AI 绘画领域必不可少的一部分,利用 AI 技术进行图像修复,可以让模糊的旧照片重现清晰,保留珍贵回忆。例如,以前手机拍摄的低分辨率图片,放到如今智能手机上观看会非常模糊,这时可用 AI 技术进行高清修复。 ComfyUI 结合特定工作流,只需十几个基础节点就能实现较好的老照片修复效果。 参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。 Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练,目的是让模型学会处理各种真实世界中可能遇到的图像退化情况。 Flux Ultimator 能增加小细节,增强色彩,在 0.1 的强度设置下也有显著效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。 若图片质量细节不够,可选择 T5 Clip 的 fp16 版本。
2025-04-14
老照片修复
老照片修复是一个具有一定复杂性但通过 AI 技术可以实现较好效果的领域。以下是一些相关信息: 在解决老照片修复问题上,以往 AI 往往需要搭建极为复杂的工作流,而现在 GPT 4O 只需要一句话就可以实现。 对于老照片上色,可启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,在显存不够的情况下将图片放大到足够倍数。 对于复杂的老照片,如人物多、场景复杂、像素低的情况,可在 PS 里进行角度调整和照片裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前的工作流较复杂,现在只要十几个基础节点就能实现同样甚至更好的效果。一般先确认放大倍数,再根据图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用特定训练方式处理各种真实世界中可能遇到的图像退化情况。Flux Ultimator 能增加小细节和放大色调丰富性、深度,在 0.1 强度设置下有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时强度需小于 0.5。若图片质量细节不够,可选择 fp16 版本的 T5 Clip。
2025-04-14
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,实现方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,例如 GPT 4O 只需要一句话,就可以实现部分修复需求。 在具体的修复方法中,如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定,还可加入第二个 controlnet 来控制颜色。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前复杂的工作流现在只要十几个基础的节点就能实现同样的效果甚至更好。其中涉及参数的调节,一般先确认放大的倍数,然后根据出来的图片来调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中。若图片质量细节不够,T5 Clip 选择 fp16 的版本。
2025-04-11
老照片修复
老照片修复是一项具有一定复杂性的工作,但随着 AI 技术的发展,处理方式也在不断改进和优化。 以往,AI 在解决老照片修复问题时,往往需要搭建极为复杂的工作流。而现在,如 GPT 4O 等技术,只需要一句话就可以实现部分修复需求。 在具体的修复方法中,例如使用 SD 进行老照片上色,可以启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,在显存不够的情况下将图片放大到足够的倍数。对于复杂的老照片,如人物多、场景复杂、像素低的情况,可以先在 ps 里面进行角度调整和照片裁切,然后进行上色。如果直接上色效果不佳,可以只给场景方向的提示词,让 AI 自行决定颜色。还可以加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,并给出简单的关键词,如蓝天、绿树、灰石砖等。 ComfyUI 老照片修复结合 Flux Controlnet Upscale 工作流,以前较为复杂的工作流现在只需十几个基础节点就能实现同样甚至更好的效果。在参数调节方面,一般先确认放大倍数,然后根据出来的图片调整 controlNet 的强度。Flux.1dev ControlNet 是为低分辨率图像开发的模型,可直接与 diffusers 库一起使用,采用合成复杂数据退化方案进行训练。Flux Ultimator 能增加小细节和放大色调的丰富性和深度,在 0.1 的强度设置下也能有显著增强效果,能顺利集成到工作流程中,与其他 LORA 结合使用时需将强度降低小于 0.5。如果发现出来的图片质量细节不够,可以选择 fp16 版本的 T5 Clip。
2025-04-10
照片修复
以下是关于照片修复的相关信息: 使用 Gemini 2.0 Flash 进行照片修复: 零门槛:即使不会 PS,只要会打字就能操作。 速度快:几秒钟出结果。 效果提升小技巧:指令要具体清晰,比如“把帽子改成红色,加个星星图案”;使用清晰的照片,模糊的图可能效果不佳;多尝试修改指令。 图像高清修复的实现技术拆解: 整个流程分为三部分: 1. 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 2. 图像高清修复:使用 Iceclear/StableSR 等模型进行修复和 2 倍放大,搭配合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 3. 图像高清放大:用 realisticVision 底膜进行二次修复,使用提示词反推 node 提取画面提示词,搭配 tile ControlNet 提升细节感,再用合适的高清放大模型二次放大。 此外,GPT 4O 在解决老照片修复等问题时,以往需要搭建复杂工作流,现在只需一句话即可实现。
2025-04-10
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
请问DeepSeek如何与生产型企业进行结合创造效益 ?
DeepSeek 与生产型企业的结合可以从以下几个方面创造效益: 1. 模型优化与性能提升:英伟达基于 FP4 优化的 DeepSeekR1 检查点现已在 Hugging Face 上开源。这种优化将模型Transformer 模块内的线性算子的权重和激活量化到了 FP4,适用于 TensorRTLLM 推理。每个参数从 8 位减少到 4 位,使磁盘空间和 GPU 显存的需求减少约 1.6 倍。使用 TensorRTLLM 部署时,需要支持 TensorRTLLM 的英伟达 GPU(如 B200),并且需要 8 个 GPU 来实现 tensor_parallel_size=8 的张量并行。代码利用 FP4 量化、TensorRT 引擎和并行计算,实现高效、低成本的推理,适合生产环境或高吞吐量应用。 2. 部署指南:社区伙伴 Hua 投稿的《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》,手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 3. 为企业带来实质提升:DeepSeek 的强化学习和联网搜索能力改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。其开源策略打破了技术垄断,让国内大模型能力迅速提升。在企业级部署方面,通过行业知识蒸馏和领域自适应训练,实现对企业非结构化数据的深度解析能力。特别是在实时决策支持、多模态交互及复杂知识图谱构建方面,为企业打造具备持续进化能力的数字神经中枢。这种“AI 即服务”的部署模式,重构了传统工作流效率,并通过预测性分析和认知自动化开启企业智能化的第二增长曲线。同时,还可以考虑垂直场景强化学习机制的增加,如在智能制造场景中嵌入设备故障模式自发现的奖惩机制;以及可信计算架构的升级,针对金融、医疗等高合规需求场景。
2025-04-10
请问有什么AI最新在零售行业的应用,最好有趣,实用有建设性
以下是 AI 在零售行业的一些有趣、实用且有建设性的最新应用: 1. 舆情、投诉、突发事件监测及分析:通过 AI 技术实时监测和分析消费者的反馈和市场动态,帮助企业及时做出应对策略。 2. 品牌营销内容撰写及投放:利用 AI 生成吸引人的营销文案,并精准投放到目标受众。 3. 自动化库存管理:基于历史销售数据和其他相关因素,预测未来的库存需求,优化库存配置,降低成本。 4. 自动生成或完成 SKU 类别选择、数量和价格分配:提高商品管理的效率和准确性。 5. 客户购物趋势分析及洞察:深入了解消费者的购物偏好和趋势,为企业的产品开发和营销策略提供依据。 此外,在医疗药品零售领域,AI 也有广泛的应用: 1. 药品推荐系统:根据用户购买记录和症状描述等数据,推荐合适的非处方药品和保健品,提高销售转化率。 2. 药品库存管理:分析历史销售数据、天气、疫情等因素,预测药品需求量,优化库存策略。 3. 药品识别与查询:借助计算机视觉技术,用户通过手机拍摄药品图像即可获取相关信息。 4. 客户服务智能助手:基于自然语言处理技术,回答顾客关于购药、用药、保健等常见问题。 5. 药店运营分析:分析销售、顾客流量、库存等大数据,发现潜在问题和优化空间。 6. 药品质量监控:利用机器视觉、图像识别等技术检测药品的包装、标签、颜色等是否合格。 7. 药品防伪追溯:利用区块链等技术实现全流程的药品溯源,保障药品供应链的安全和可信度。 总之,AI 技术在零售行业的应用能够提升购物体验、优化运营管理、降低成本,并为企业创造更多的价值。
2025-04-10
我是一名日语大四学生,我要利用我的开题报告结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
要向 DeepSeek 提问以结合您的开题报告完成论文初稿,您可以遵循以下正确的提问模板: 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,例如您的开题报告的主题、研究目的、已有的研究进展等,以使 DeepSeek 更好地理解您的问题。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如您希望它根据开题报告提供论文大纲、分析相关数据、提供文献综述等,提出的需求越明确获得的答案越有价值。 4. 补充要求:您还可以提出关于回答的格式、风格、字数等方面的要求。 例如:您可以这样提问“我赋予您论文撰写助手的角色,我的开题报告主题是关于日本文化在现代社会中的变迁,目前我已经完成了初步的文献收集和分析,我的目标是请您根据这份开题报告为我生成一个详细的论文大纲,要求大纲结构清晰,逻辑连贯,具有一定的创新性”。
2025-03-31
我是一名日语大四学生,我要利用我的开题报告和文献综述结合deepseek完成一篇论文初稿,请问怎么向deepseek提问
向 DeepSeek 提问时,可遵循以下万能通用的提问公式:提示词=赋予角色+背景/现状+目标/需求+补充要求。 1. 赋予角色(选填):对 DeepSeek 赋予一个特定的角色,以便它能更专业地回答您的问题。 2. 背景/现状(必填):提供尽可能详细的背景信息,以使它更好地理解您的问题,并为您提供更准确的答案。例如您是日语大四学生,正在进行开题报告和文献综述相关工作。 3. 需求/目标(必填):明确告诉 DeepSeek 您的需求,比如完成一篇结合开题报告和文献综述的论文初稿。 4. 补充要求:例如指定写作风格要具有吸引力、友好性和幽默感等。 另外,在使用 DeepSeek 时还需注意: 对于像“仅通过东方集团的历年公开财务数据,分析这家公司的潜在投资机会和风险”这样的特定需求,可能需要进一步追问以获得更满意的结果。 与 DeepSeek 交流时,在其提供方法建议后,可以追问背后的方法论。 对于创作类的需求,如脱口秀段子,可以结合特定人物的特点和风格,并指定主题和字数等要求。
2025-03-31
我想做个专业领域的智能客服,请问您有一些类似案例吗?
以下是为您提供的一些相关案例: 在 Manus 案例中,有让其创建需要上传文件的 dify 工作流,如根据多篇文章写脱口秀段子,并制作简便美观的网页和接入工作流的 api 等复杂操作。 有关于智能客服场景如何帮助企业更好地对内服务客服、对外服务客户的案例。 在通用 AGENT 案例合集中,包括生活娱乐类 AGENT 方面的案例,如根据出差计划做成的具有多种功能的互动式网页,如供应商工厂探索地图;还有整活娱乐方面的案例,如荒谬句子生成器和豆瓣品味分析师。荒谬句子生成器实现了小时候的线下游戏功能,并增加了扩展句子和虚拟专家评论功能;豆瓣品味分析师能根据用户的豆瓣 id 获得评价信息并生成锐评报告。
2025-03-28
如果改变照片中人物的表情
要改变照片中人物的表情,可以通过以下几种方式: 1. 在使用 SD 脸部修复插件 After Detailer 时,输入如“伤心、流泪”这样针对表情的正负提示词,人物的表情会进行相应改变。但输入“带着墨镜”可能没有效果。 2. 使用 Magic Brush 工具,选中人物的眉毛、眼睛、嘴唇等部位,通过调节轨迹的方向来实现合理的表情变化。 3. 在 Midjourney V6 中,若遇到无法改变角色脸部等问题,可按照以下步骤排除故障:首先确保写了强有力的提示以建议新的姿势、风格或细节;若角色抗拒被操纵,可能是 cref 图像支配了提示,可通过使用 cw进行处理,尝试将提示与较低的 cref 权重一起使用,如 cw 60,按照特定步骤操作,还可考虑使用 来恢复面部区域。
2025-04-14
老照片变高清
以下是使用 AI 将老照片变高清的步骤: 1. 给老照片上色:为做到颜色与内容统一,可启用 cutoff 插件,按顺序设置好颜色提示词。不了解该插件的可参考文章。 2. 使照片人脸变清晰:将照片放入后期处理,使用 GFPGAN 算法,可参考文章。但此步骤无法使头发、衣服等元素变清晰。 3. 放大照片:将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免干扰原图。 4. 显存不够时:启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能帮助放大图片。 5. 处理复杂照片:对于人物多、场景复杂、像素低的照片,可先在 ps 里调整角度和裁切,然后上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词,如“蓝天、绿树、灰石砖”。最后进行脸部修复和放大。
2025-04-13
如何让老照片变清晰
以下是让老照片变清晰的方法: 1. 将照片放入后期处理中,使用 GFPGAN 算法使人脸变清晰。您可以参考文章。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章。 3. 切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免对原图产生干扰。 4. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染的功能,能在显存不够的情况下将图片放大到足够的倍数。 5. 对于复杂的照片,可先在 ps 里面进行角度调整和照片裁切,然后使用上述步骤进行上色。若直接上色效果不佳,可放弃人物服装的颜色指定,只给场景方向,让 AI 自行决定。还可加入第二个 controlnet 来控制颜色,使用 t2ia_color 的模型,给出简单的关键词,如“蓝天、绿树、灰石砖”。 另外,进行超清无损放大修复需要准备以下文件和操作: 1. 使用 StabilityAI 官方的 Stable Diffusion V2.1 512 EMA 模型,放入 stablediffusionwebui/models/StableDiffusion/文件夹中。 2. 将 StableSR 模块(约 400M 大小)放入 stablediffusionwebui/extensions/sdwebuistablesr/models/文件夹中。 3. 将 VQVAE(约 750MB 大小)放在 stablediffusionwebui/models/VAE 中。
2025-04-13
处理 excel 表格 的 AI 工具
以下是一些可用于处理 Excel 表格的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint 等办公软件的 AI 工具,通过聊天形式,用户告知需求后,Copilot 会自动完成任务,如数据分析或格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 5. Ajelix:可处理 Excel 和 Google Sheets 表格的 AI 工具,链接为。 6. FormX.ai:能够自动从表格和文档中提取数据的 AI 工具,链接为。 随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。内容由 AI 大模型生成,请仔细甄别。
2025-04-11
LLM模型响应时间较长,如何处理超时时间问题
处理 LLM 模型响应时间过长导致的超时问题,可以考虑以下方法: 1. 参数有效调整:这是一种新颖的微调方法,通过仅训练一部分参数来减轻微调 LLM 的挑战。这些参数可能是现有模型参数的子集,或者是一组全新的参数,例如向模型添加一些额外的层或额外的嵌入到提示中。 2. 优化提示设计:采用合适的提示方法,如零样本提示、一次性提示、Fewshot prompting 等。零样本提示是只给出描述任务的提示;一次性提示是让 LLM 执行任务的单个示例;Fewshot prompting 是让 LLM 执行任务的少量示例。同时,可以使用结构化模式设计提示,包含上下文、问题示例及相应答案等组件,以指示模型应如何响应。 3. 避免频繁调整某些参数:尤其是 Top K 和 Top P,不需要经常对其进行调整。 4. 关注模型响应质量:即使有良好的提示设计,模型输出仍可能不稳定,需要持续关注和优化。 5. 考虑成本和时间:微调大型模型可能耗时且成本高,为大模型提供服务也可能涉及额外麻烦和成本,需要综合评估和优化。
2025-04-11
cursor 长文档处理长文档
以下是关于 Cursor 长文档处理的相关信息: UI 用户界面: 当 Cursor 仅添加其他文本时,补全将显示为灰色文本。如果建议修改了现有代码,它将在当前行的右侧显示为 diff 弹出窗口。 您可以通过按 Tab 键接受建议,也可以通过按 Esc 键拒绝建议。要逐字部分接受建议,请按 Ctrl/⌘→。要拒绝建议,只需继续输入,或使用 Escape 取消/隐藏建议。 每次击键或光标移动时,Cursor 都会尝试根据您最近的更改提出建议。但是,Cursor 不会始终显示建议;有时,模型预测不会做出任何更改。 Cursor 可以从当前行上方的一行更改为当前行下方的两行。 切换: 要打开或关闭该功能,请将鼠标悬停在应用程序右下角状态栏上的“光标选项卡”图标上。 @Docs: Cursor 附带一组第三方文档,这些文档已爬取、索引并准备好用作上下文。您可以使用@Docs 符号访问它们。 如果要对尚未提供的自定义文档进行爬网和索引,可以通过@Docs>Add new doc 来实现。粘贴所需文档的 URL 后,将显示相应模式。然后 Cursor 将索引并学习文档,您将能够像任何其他文档一样将其用作上下文。 在 Cursor Settings>Features>Docs 下,您可以管理已添加的文档,包括编辑、删除或添加新文档。 @Files: 在 AI 输入框中(如 Cursor Chat 和 Cmd K),可以使用@Files 引用整个文件。如果继续在@后键入,将在策略之后看到文件搜索结果。 为确保引用的文件正确,Cursor 会显示文件路径的预览,这在不同文件夹中有多个同名文件时尤其有用。 在 Cursor 的聊天中,如果文件内容太长,Cursor 会将文件分块为较小的块,并根据与查询的相关性对它们进行重新排序。
2025-04-10
关于处理法律事务的提示词
以下是关于处理法律事务的提示词相关内容: 1. 陶力文律师观点:不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应将提示词视为相对完善的“谈话方案”,成果在对话中产生。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入提示词就得到想要的东西。陶律师习惯用的大模型是 KIMI,也可使用 GPT、文心一言、豆包等。其个人 Prompt 库取名为【元始洞玄灵宝枢机 AI 符法集成道藏】,库里每篇灵机符箓命名为【敕令 XXXX】。【箓】描述符箓整体所属、版本,【符】关键,涉及具体操作步骤和方法,开头赋予 AI 身份划定边界。 2. 潘帅观点:律师常用 Prompt 场景包括案例检索和类案检索。案例检索最好使用法律行业垂类的 AI 产品,通用型 AI 可能存在问题。案例检索的 Prompt 指令词结构为【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】,并列举了多个具体例子,如商标侵权案件中“混淆可能性”标准的判例检索等。
2025-04-03
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
长文本处理
以下是关于长文本处理的相关信息: 通义千问发布了一个模型并开源了两个模型,其中一个在长文本处理方面有显著提升。 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 此外,还有关于利用 Langchain+Ollama+RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。其中使用了 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,文本向量模型 bgem3 具有支持多语言、长文本输入、集成多种检索能力等特点。
2025-03-31