Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

给我一个秘塔搜索的介绍及使用指南

Answer

秘塔搜索是由秘塔科技开发的一款 AI 搜索引擎,具有以下特点和功能:

  1. 多模式搜索:提供多种搜索方式,满足不同用户需求。
  2. 无广告干扰:为用户提供更纯净的搜索环境。
  3. 结构化展示:使搜索结果呈现更清晰、有条理。
  4. 信息聚合:整合各类相关信息,提升搜索效率和体验。

使用指南方面:

  1. 明确搜索需求:清晰地知道自己想要查找的内容。
  2. 输入准确关键词:有助于获得更精准的搜索结果。

如果您想了解更多关于秘塔搜索的详细内容,建议您访问其官方网站获取最新和更全面的信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 搜索引擎

[title]问:AI搜索引擎以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。2.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。3.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。4.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。5.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。6.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。7.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别

胎教级教程:万字长文带你理解 RAG 全流程

旁白:在学习RAG之初,你不知道如何切入,这时候你认识了一个叫做大圣的老师。他说,你可以从AI搜索切入,帮助你理解RAGRAG的流程相对复杂,为了让大家更好的理解RAG,我们先用大家比较熟悉的AI搜索来引出RAG。AI大模型最擅长的是语义理解和文本总结,最不擅长的就是获取实时的信息。搜索引擎最擅长的就是获取实时的信息,但是缺点就是信息太分散了,每次都需要人为进行总结。AI+搜索引擎的结合,就是我们上面讲到的,给AI配备了一个活字典,让AI可以随时进行查阅。下图是一个简化版本的AI搜索工作原理,其中搜索引擎在这里就充当着知识库的角色。下面则是我用Coze制作的一个秘塔搜索机器人,感兴趣可以看下他的工作过程[20240828234529_rec_.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/QsLabWiPzoXN6GxVqpmc4Z9Vntb?allow_redirect=1)OK,关于AI搜索我们就简单介绍到这里,下面我们正式开始介绍RAG

大圣:我用 Coze 搓了一个乞丐版的秘塔搜索

我先通过测试谷歌搜索节点的能力拿到谷歌搜索节点的输出,也就是Code节点的输入这里你需要了解一种叫做JSON的数据结构,这里我先不展开,我已经在规划一篇AI时代,普通人必须了解的技术概念文章了,敬请期待!谷歌的输出比较复杂,为了更好的说明原理,我从里面取出来了,本次教程需要使用的字段,这个其实就是这里面我们主要使用的字段有:link:也就是谷歌搜索出来的条目的网址title:苏轼-维基百科,自由百科全书snippet:就是针对网页内容一个简短的介绍source:维基百科以上就是Code节点的输入啦,然后我们就开始使用代码节点进行处理

Others are asking
trae的使用指南
以下是 Trae 的使用指南: 一、Trae 简介 Trae 是字节跳动推出的智能编程助手,提供基于 Agent 的 AI 自动编程能力,使用自然语言对话就能实现代码编写。 二、Trae 的功能 1. 提供传统的 IDE 功能,包括代码编写、项目管理、插件管理、源代码管理等。 2. 智能问答:在编写代码时,可随时与 AI 助手对话,获得代码解释、注释和错误修复等帮助。 3. 实时代码建议:AI 助手能理解当前代码并在编辑器中实时提供建议,提升编程效率。 4. 代码片段生成:通过自然语言描述需求,生成相应代码片段,甚至能编写项目级或跨文件的代码。 5. 从 0 到 1 开发项目:告诉 AI 助手想开发的程序,它将提供相关代码或自动创建所需文件。 三、下载 Trae 官网下载地址:https://www.trae.ai/download ,支持 Mac 系统、Windows 系统,未来支持 Linux 系统。 四、使用方法 1. 安装:下载完成后按照界面提示一步步安装。 2. 登录:安装完成后点击右侧登录按钮,程序会自动打开网页提示登录,无账号需先注册。登录完可能会出现“App Unavailable”,此时需要开启科学上网。 3. 网页登录成功后可关闭科学上网,再点击中间大按钮,自动进入 Trae 客户端。 五、模式选择 1. Chat 模式:根据描述进行代码生成、解释、分析问题或解决问题。 2. Builder 模式:可让 Trae 帮助从 0 开发一个完整的项目,对代码文件的任何更改都会自动保存。 六、使用案例 1. 生成一个贪吃蛇游戏 打开 Builder 模式,输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后,Trae 开始思考和代码编写,期间需手动接入进行文件审查,点击“全部接受”。 代码生成完成后,Trae 自动运行命令启动页面,点击运行,在 Webview 中可看到实现的游戏效果,试玩基本无 Bug。 Trae 会进行工作总结,说明已实现的功能,如游戏包含的特性、主要功能和游戏界面等。 2. 生成一个任务清单应用 在输入框中输入:使用 Web 技术开发一个任务清单应用。 3. 根据 UI 设计图自动生成项目代码 从站酷上找一张设计图,输入提示:使用 html 技术实现如图大屏页面。 七、总结 从实际体验来看,Trae 表现可圈可点。 1. 高效代码生成能力:能在几分钟内生成完整框架,代码结构清晰且功能齐全,甚至能自动处理依赖项和运行命令。 2. 多技术栈支持:对 Web 技术掌握远超预期,生成的代码可直接运行且无明显语法错误。 3. 动态调整潜力:能根据用户反馈快速调整样式,自适应布局的实现展现了 AI 的迭代能力。
2025-04-09
deepseek的安装与使用指南
以下是关于 DeepSeek 的安装与使用指南: 安装: DeepSeek 网址为:https://www.deepseek.com/zh 。国内能访问,网页登录方便,目前完全免费。 使用: 1. 搜索 www.deepseek.com ,点击“开始对话”。 2. 点击开始对话后,左边选择代码助手。 3. 将装有提示词的代码发给 DeepSeek 。 4. 认真阅读开场白之后,正式开始对话。 此外,通过以下方式可以让 DeepSeek 的能力更上一层楼: 1. 用 Coze 做效果对比测试。 2. 设计思路包括将 Agent 封装成 Prompt 并储存在文件,通过提示词文件让 DeepSeek 实现同时使用联网功能和深度思考功能,在模型默认能力基础上优化输出质量等。 3. 完整提示词可参考相关版本。 在 AI 编程与炼金术方面,DeepSeek 也有相关应用,例如在 Trae 中的使用,具体可参考以下知识图谱: |章节|知识点| ||| || || || || || || || || || || || ||
2025-02-25
清华104页AI使用指南
以下是清华 104 页 AI 使用指南的相关内容: 智能纪要部分: 共学课程涵盖 config UI 从入门到精通,还有个人专栏研究报告、产品数据、全球投融资情况等内容,做项目时可查看细分赛道融资情况,也可学习 AI 功能创业,介绍了企业专栏内容如 Kimi 的技巧等。 提到了 AI 的案例和投稿,包含开发相关、微信机器人、人物角色等内容,还有日报动态、法律法规、历史更新和社区介绍等,布置了关于 AI 兴趣方向的小作业。 介绍了 CONFIUI 生态大会东京站 11 月 16 17 日的活动内容及报名,包括社区共创项目、大奖、首届活动情况、海外创作者共学等。 总结了关于 AI 知识库使用及 AIPO 活动的介绍,包括使用情况、发起背景、内容安排及相关资源等;AIPO 线下活动及 AI 相关探讨,包括规则、玩法、重要地位和研究方向等;way to AGI 社区活动与知识库介绍,包括活动安排、材料准备、使用和内容更新等;还包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。 介绍了 AI 相关技术与活动,如 AI 音乐创作、数字人语音合成、config UI 的应用,以及社区共创项目如东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等,还有作业与报名、线下寄送物料组织活动、AI 春晚即将开始、AIPO 活动及相关挑战、共学活动与技能提升、硬件机器人材料购买、自媒体发布与流量扶持、活动奖项与历史玩法、工具使用与新大赛预告等。
2025-02-17
deepseek 使用指南
以下是 DeepSeek 的使用指南: 1. 效果对比:用 Coze 做了小测试,可对比查看相关视频。 2. 如何使用: 步骤 1:搜索 www.deepseek.com,点击“开始对话”。 步骤 2:将装有提示词的代码发给 DeepSeek。 步骤 3:认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力基础上优化输出质量,减轻 AI 味,增加可读性。 设计了阈值系统,可能形式大于实质,之后根据反馈可能会修改。 用 XML 进行更为规范的设定,而非 Lisp 和 Markdown。 4. 完整提示词:v 1.3 5. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 此外,还有以下相关内容: 1. 2 月 7 日的社区新闻速递中,《》是清华大学新闻与传播学院新媒体研究中心出品的指南,详细阐述了 DeepSeek 的功能及使用方法。 2. DeepSeekR1 提示词系统完全指南: 核心原理认知:包括 AI 特性定位(多模态理解、动态上下文、任务适应性)和系统响应机制(采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重、符号强调敏感)。 基础指令框架:如果不知道如何表达,可套用框架指令,包括四要素模板、格式控制语法(强制结构、占位符标记、优先级符号)。 进阶控制技巧:包括思维链引导(分步标记法、苏格拉底式追问)、知识库调用(领域限定指令、文献引用模式)、多模态输出。
2025-02-12
deepseek使用指南
以下是 DeepSeek 的使用指南: 1. 效果对比:用 Coze 做了小测试,可对比查看 2. 如何使用: 步骤 1:搜索 www.deepseek.com,点击“开始对话” 步骤 2:将装有提示词的代码发给 Deepseek 步骤 3:认真阅读开场白之后,正式开始对话 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用,同时减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 4. 完整提示词:v 1.3 5. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 此外,还有以下相关内容: 1. 2 月 7 日的社区新闻速递中,《》是清华大学新闻与传播学院新媒体研究中心出品的指南,详细阐述了 DeepSeek 的功能,包括智能对话、文本生成、代码生成、自然语言理解等,并探讨了如何使用 DeepSeek,包括推理模型与通用模型的区别、提示语设计策略以及如何从入门到精通。文章还介绍了提示语设计的核心技能、常见陷阱及应对方法,旨在帮助用户更好地掌握 AI 工具的使用,提升工作效率和创新能力。 2. DeepSeekR1 提示词系统完全指南: 核心原理认知: AI 特性定位:多模态理解,支持文本/代码/数学公式混合输入;动态上下文,对话式连续记忆(约 4K tokens 上下文窗口);任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型/输出格式/知识范围,对位置权重(开头/结尾)、符号强调敏感。 基础指令框架:如果不知道如何表达,可套用框架指令。包括四要素模板、格式控制语法(强制结构:使用```包裹格式要求;占位符标记:用{{}}标注需填充内容;优先级符号:>表示关键要求,!表示禁止项)。 进阶控制技巧: 思维链引导:分步标记法,如请逐步思考:1.问题分析→2.方案设计→3.风险评估;苏格拉底式追问,在得出最终结论前,请先列举三个可能存在的认知偏差。 知识库调用:领域限定指令,如基于 2023 版中国药典,说明头孢类药物的配伍禁忌;文献引用模式,如以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破。 多模态输出。
2025-02-11
使用指南
以下是为您提供的几种使用指南: Midjourney 的使用指南: Midjourney v6 版本提供“风格一致性”功能,用户输入一幅图像,MJ 可根据其风格创作,如素描风、油画风等。参考。 使用指令:垫图链接(可选择)+关键词+“sref”+图片链接+风格化参数+“v 6.0”。指令为:url+关键词+“sref”+url+“sw”+“v 6.0”。“sw”风格化参数用于控制整体风格强度,默认为 100,数值范围为。参考多张图像风格时,url 间使用空格隔开,权重代表不同参考风格的权重。 sref 模仿图片风格,垫图模仿图片结构、元素。 生成 url:准备一张照片和想要的写真风格参考图片。Prompt:垫图 url+Chinese female model,upper body,clothes with collars,bright space natural pose,big earrings,Chinese traditional minimalism,flat illustration,geometric shapes,minimalismniji 6ar 3:4sw 200sref url 。适用模型为 V6 和 Niji V6 。 Discord 的使用指南: 注册和下载:在 Discord 官网(discord.com)注册账号,可使用谷歌、Facebook 等账号直接登录。根据设备(Windows、Mac、Linux、iOS、Android 等)下载并安装应用程序或使用网页版。 创建或加入服务器:可创建新服务器并邀请朋友加入,或通过邀请链接或搜索加入现有公开服务器。每个服务器可创建多个不同频道。 频道介绍:服务器通常包含多种类型频道,如文字频道用于文字聊天,语音频道用于语音通话,私聊频道用于与个人好友私聊。 权限管理:服务器所有者可设置频道权限,如允许/禁止发送图片/文件,设置只读权限等。还能创建不同身份组管理成员权限。 消息和信息交互:在频道中可发送文字、表情包、图片、视频、文件等丰富消息内容,系统支持 Markdown 语法格式化文本,成员间可回复、引用、添加表情等交互。 语音和屏幕共享:进入语音频道可进行语音聊天、视频通话,还可共享屏幕画面。 机器人和扩展:有大量机器人供选择添加,实现娱乐、提示、搜索等功能。还可浏览商店添加扩展定制界面和体验。 移动设备使用:在手机和平板电脑上安装应用,随时随地聊天保持在线互动。 Fooocus 的使用指南: Fooocus 使用的是最新推出的 SDXL 1.0 模型,对 stable diffusion 和 Midjourney 做了结合升级。保留了 SD 的开源属性,可部署到本地免费使用;操作界面吸取了 midjourney 简洁的特点,省去了 WebUI 中复杂的参数调节,让用户专注于提示和图像。只有图像展示窗口、正向提示词和生成按钮 3 项。勾选“Advanced”会弹出高级设置窗口,可调整画面宽高比、风格、图像数量、种子值、反向提示词、模型、lora 权重比值、图像锐利程度等。风格选项整合了 100 多种常见画面风格,涉及写实、胶片、电影质感、动漫、水彩、黏土、3D、等距、像素、霓虹、赛博朋克、波普、纸艺等方面。高级选项用于设置模型、lora、清晰度等。 配置要求:本地部署,需要不低于 8GB 的内存和 4GB 的英伟达显卡。 Fooocus 介绍/安装包下载:https://github.com/lllyasviel/Fooocus (文末领取软件+模型整合包:16G) 使用指南:https://github.com/lllyasviel/Fooocus/discussions/117 大模型(base 和 Refiner)默认放在这里:\\Fooocus_win64_1110\\Fooocus\\models\\checkpoints
2025-02-11
介绍一下秘塔AI的基本情况和使用技巧
秘塔 AI 是一款优秀的工具,具有以下基本情况和使用技巧: 基本情况: 整体流程较长且完整,首先需要构建专题,并上传文档或者复制网页链接。 搜索完成后的操作类型丰富,例如可以继续追问、导出文档、收藏、保存到秘塔写作猫并编辑、生成在线演示文稿、下载脑图图片等,还能查看与原文的对应关系并进一步搜索。 RAG 和搜索能力出色,是国产之光。 使用技巧: 构建专题时,认真准备上传的文档或网页链接。 搜索时,在搜索框左下角选中专题以定制数据源。 充分利用丰富的搜索完成后的操作,满足不同需求,如追问、编辑、分享等。 您可以通过以下链接访问秘塔 AI 搜索:https://metaso.cn
2025-03-26
秘塔搜索 api接口
以下是关于秘塔搜索的相关信息: 秘塔 AI 搜索是由秘塔科技开发的,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户的搜索效率和体验。 在获取微信公众号文章封面时,可使用秘塔 AI 搜索。输入文章链接,通过一个在线工具(https://www.mgpaiban.com/tool/wxfm.html )即可获取封面。
2025-03-05
天工AI和秘塔AI哪个更好一些,你给出的选择建议
天工 AI 和秘塔 AI 各有特点。 秘塔 AI 搜索由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 天工 AI 搜索采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。在搜索时直接上传文件,就能实现“定制 AI 搜索信息源”的效果。目前支持对话追问,支持脑图的图片下载。但天工 AI 目前仍处于早期版本的状态,一些功能如原文的对应、文本编辑、笔记、下钻探索等还不支持,也没有打通一些出彩的板块,没有跟音乐创作、图片创作等功能连接起来形成完整的“AIGC 工作流”。 综合来看,选择哪个更好取决于您的具体需求。如果您更注重成熟的功能和搜索体验,秘塔 AI 可能更适合;如果您对未来的多模态搜索和发展潜力有期待,且能接受当前一些功能的不完善,天工 AI 也是一个选择。
2025-02-15
如何用秘塔写小说
以下是关于用秘塔写小说的相关信息: 秘塔写作猫(https://xiezuocat.com/ )是一款 AI 写作伴侣。它能帮您推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写、一键修改,实时纠错的同时一并给出修改建议,智能分析文章的各类属性,用人工智能为您的文章正负情感、情绪强度和易读性打分。 此外,还有其他中文的内容仿写 AI 工具可供选择,如笔灵 AI 写作(https://ibiling.cn/ ),它是得力的智能写作助手,心得体会、公文写作、演讲稿、小说、论文等都能应对,支持一键改写/续写/扩写,智能锤炼打磨文字,使之更加符合您的需求。腾讯 Effidit 写作(https://effidit.qq.com/ )也是智能创作助手,由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-11
如何评价秘塔AI
秘塔 AI 是一款由秘塔科技开发的具有多种特色和优势的产品: 1. 作为 AI 搜索引擎,它提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 2. 整体流程较长且完整。首先需构建专题,并上传文档或复制网页链接,然后在搜索框左下角选中专题以定制数据源。搜索完成后的操作类型丰富,包括继续追问、导出文档、收藏、保存到秘塔写作猫并编辑、生成演示文稿、下载脑图图片、查看与原文对应关系并进一步搜索等。其创作编辑分享的 AIGC 工作流已初具雏形,RAG 和搜索能力表现良好,是国产之光。 3. 秘塔科技在 9 月 20 日发布的产品经理招聘信息的 JD 描述不拘一格,受到赞誉。 此外,还有众多其他的 AI 搜索引擎,如 Perplexity、360AI 搜索、天工 AI 搜索、Flowith、Devv、Phind 等,它们通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。
2025-01-18
秘塔是ai吗
秘塔是 AI 。秘塔科技开发了秘塔 AI 搜索,它提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。在一些关于 AI 时代搜索的介绍中,也将秘塔 AI 搜索作为示例,指出其没有广告,能直达结果。同时在相关的比较和讨论中,也有涉及到秘塔。
2024-12-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
DeepSeek,里面搜索怎么能出来图片?
要在 DeepSeek 中搜索出图片,您可以参考以下信息: 在即梦 AI 平台上找到 DeepSeek 入口,简单描述您想要的画面,DeepSeek 会生成详细的提示词,将提示词复制到生图功能的输入框,选择 3.0 模型,点击生成。 DeepSeek 使用平台包括 DeepSeek 官网、API(V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号)。Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 将下载的 html 文件及图片放到同一个文件夹,让 Cursor 进行图片增加即可。 此外,DeepSeek 深夜发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其具有统一 Transformer 架构,提供 1B 和 7B 两种规模,全面开源,支持商用,MIT 协议,部署使用便捷,Benchmark 表现优异等特点。模型地址: 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-04-09
ai搜索引擎哪个好
以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持图像、语音等多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 做好 AI 搜索引擎的关键在于: 1. 准确度:取决于问答底座模型的智能程度和挂载上下文的信息密度。要选用智能的问答底座模型,并对 RAG 的检索结果进行排序去重以保证信息密度。 2. 差异化创新:错位竞争,如对问答结果以 outline/timeline 等形式输出,支持多模态搜索问答,允许挂载自定义信息源等策略。 3. 具备“准/快/稳”的特点:回复结果要准,响应速度要快,服务稳定性要高。 在使用 AI 搜索引擎时需注意: 1. 幻觉风险较高,大多数 AI 搜索引擎未连接到互联网。 2. 必应通常是较好的选择,特别是在某些特定场景下,如技术支持、决定吃饭地点或获取建议等,必应可能比谷歌更好。但这是一个迅速发展的领域,使用时应小心。对于儿童,可汗学院的 Khanmigo 提供由 GPT4 驱动的良好的人工智能驱动辅导。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08
如何搜索知识库
以下是关于知识库搜索的相关信息: 知识库搜索网址:https://search.atomecho.cn/ Coze 中工作流配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(像人类一样理解词与词、句与句之间的关系,适用于需要理解语义关联度和跨语言查询的场景)、全文检索(基于关键词进行,适用于特定名称、专有名词、术语、缩写词、ID 等场景)、混合检索(结合全文检索和语义检索的优势,并对结果进行综合排序召回相关内容片段)。 最大召回数量:选择从检索结果中返回给大模型使用的内容片段数量,数值越大,返回的越多。 最小匹配度:根据设置的匹配度选取要返回给大模型的内容片段,低于设定匹配度的内容不会被返回。 提示:最大召回数量和最小匹配度直接影响输出效果,需进行协调的多轮测试找出最优值。 认识大模型 Embedding 技术加实战中: Embedding 增强 GPT 的能力的过程包括搜索内部知识库检索相关文本、将检索到的文本内容部分发送给 GPT 大模型并向其提出问题。 具体操作步骤: 准备搜索数据(仅一次):搜集数据、切块、嵌入、存储(对于大型数据集的 Embedding 结果,可使用向量数据库保存)。 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings,使用 embeddings 按照与查询相关性对文本部分进行排序,距离函数推荐使用余弦相似性。 提问(每次查询一次):将问题和最相关的部分插入到发送给 GPT 的消息中返回 GPT 的答案。 Embedding 的作用:搜索(结果按与查询字符串的相关性进行排名)、聚类(文本字符串按相似性分组)、建议(建议包含相关文本字符串的项目)、异常检测(识别出相关性很小的离群值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。
2025-04-08
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
介绍下即梦3.0的模型,为什么很多人说它好用
即梦 3.0 模型具有以下显著特点,这也是很多人认为它好用的原因: 1. 超真实: 质感提升:图片不再有磨皮过度的“假脸感”、“油腻感”,皮肤纹理、物品材质更自然。 情绪到位:人物表情不再僵硬或眼神空洞,能表现出更细腻、更有感染力的情绪,如开心、严肃、沮丧落泪等。 2. 超高清:默认能生成 1K 分辨率图片,还支持到 2K,画面更清晰,结构更准确。 3. 超专业: 影像大师:能更精准地理解电影类型(如恐怖片、爱情片、公路片)和镜头语言(如大特写、鱼眼镜头、俯视视角)。 动漫高手:动漫风格更多元(日漫、国漫、皮克斯风等),细节更丰富,色彩更统一,告别“抠图感”。 文字设计:不仅能准确生成大字、小字,还支持超多字体(细体、粗体、可爱体、毛笔字、涂鸦体等),排版更专业、更有设计感。 4. 超智能:能更好地理解自然语言描述,简单的指令也能出好图,支持“一句话 P 图”的自然语言编辑能力。 此外,即梦 3.0 在文字处理方面表现出色,不仅提升了大字的准确性、设计感和丰富度,还大幅解决了小字的稳定性问题。相比之下,在中文场景中,其他模型可能存在一些局限性,如 GPT4o 可能存在不识别某些中文字、难以生成特别设计感的字体等问题。而即梦 3.0 作为中文 AI 绘图模型,在中文的表现性上对国内用户更有用且友好。
2025-04-14
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14