「AGIへの道」飛書ナレッジベースへ直行 →

怎么做人工智能

回答

实现人工智能主要有以下几种方法:

  1. 自上而下的方法(符号推理):模拟人类通过推理来解决问题的方式,包括对人类知识的提炼并用计算机可读的形式表示,开发在计算机内部模拟推理的方法。人们在推理时知道自己的思考步骤,可将此过程形式化转化为计算机程序。但从人类专家提取知识可能困难,有些任务如根据照片判断年龄无法简化为对知识的操作。
  2. 自下而上的方法(神经网络):模拟人脑的结构,由大量称为神经元的简单单元组成。每个神经元的行为取决于输入数据的加权平均值,可通过提供训练数据来训练神经元网络解决问题,类似于新生儿通过观察学习。
  3. 多智能体系统(multi-agent):基于大量简单智能系统的相互作用,复杂的智能行为可由此产生。
  4. 进化方法或遗传算法:基于进化原理的优化过程。

此外,人工智能是研究如何使计算机表现出智能行为,例如做人类擅长的事。最初计算机用于按明确程序运算,而对于像根据照片判断年龄这类无法明确解法的任务,正是人工智能感兴趣的。在金融、医学和艺术等领域,人工智能都能带来益处。

AIモデルによって生成されたコンテンツであり、慎重に確認してください(提供元: aily)

参照

人工智能简介和历史

[title]人工智能简介和历史[heading1]实现人工智能的不同方法如果我们希望让一台计算机表现得像人类一样,需要在计算机内模拟人类的思维方式。因此,我们需要理解是什么造就了人类的“智能”。我们必须理解自己的决策过程是如何进行的,才能够为机器编写智能程序。如果你稍微做一下自我觉察,就会发现有些过程是下意识发生的,例如我们可以不假思索地区分出猫和狗,而有些过程则需要推理。解决这个问题有两种可能的方法:|自上而下的方法(符号推理)|自下而上的方法(神经网络)|<br>|-|-|<br>|自上而下的方法模拟人类通过推理来解决问题的方式。它包括对人类知识的提炼,并用计算机可读的形式来表示,此外还需要开发一种在计算机内部模拟推理的方法。|自下而上的方法模拟人脑的结构,由大量称为神经元的简单单元组成。每个神经元的行为取决于输入数据的加权平均值,我们可以提供训练数据来训练神经元网络,从而解决有用的问题。|还有一些其他可能实现智能的方法:新兴的、依靠协同的多智能体系统(multi-agent),它基于这样一个事实,即复杂的智能行为可以来自大量简单智能系统的相互作用。根据进化控制论,在元系统跃迁的过程中,智能可以从更简单的反应行为中产生。进化方法或遗传算法(genetic algorithm),是一种基于进化原理的优化过程。[1]译者注:元系统跃迁,[Metasystem Transition](https://en.wikipedia.org/wiki/Metasystem_transition),是指通过演化涌现出更高层次的组织或者控制。我们将在课程的后续部分考虑这些方法,但现在我们将重点关注自上而下、自下而上两个主要方向。

人工智能简介和历史

在自上而下的方法中,我们尝试对推理过程进行建模。由于我们在推理时可以知道自己的思考步骤,因此我们可以尝试将这一过程形式化,并转化为计算机程序。这就是所谓的符号推理(symbolic reasoning)。人们的头脑中往往有一些指导决策过程的规则。例如,当医生对病人进行诊断时,他/她可能会通过发烧症状意识到病人身体内部可能有一些炎症。通过将大量规则应用于特定问题,医生有可能得出最终的诊断结果。这种方法在很大程度上依赖于知识表示和推理。从人类专家那里提取知识可能是最困难的部分,因为医生在很多情况下并不清楚自己为什么会得出特定的诊断结果。有时,他/她只是直接在脑海中浮现出解决方案,而并未经过明确的思考。类似“根据照片判断一个人的年龄”这样的任务,根本无法简化为对知识的操作。[heading2]自下而上的方法[content]我们还有另一种选择,就是模拟大脑中最简单的元素——神经元。我们可以在计算机中构建一个人工的神经网络,然后通过举例教它解决问题。这类似于新生儿通过观察周围环境来学习的过程。✅对婴儿的学习方式做一个小调研。婴儿大脑中的基本要素有哪些?那么机器学习(ML)呢?人工智能的一部分方法是基于数据来使计算机学会解决问题,这样的方法称为机器学习。我们在本课程中将不讨论经典机器学习,建议你可以学习单独的《[机器学习入门](https://github.com/microsoft/ML-For-Beginners)》课程。

人工智能简介和历史

人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。✅想一想,如果人工智能得以实现,哪些任务可以被交给计算机完成?考虑金融、医学和艺术领域,这些领域如今是如何从人工智能中受益的?

他の質問
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10