Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

讯飞星火主要用于什么场景

Answer

讯飞星火主要用于以下场景:

  1. 在结构化 prompt 测试和反馈方面,对于某些输入能给出相对贴合实际的回答,经适当调解和提示可输出较完整的咨询文案。
  2. 在律师答辩状 prompt 评测中,欢迎语直接,在输出内容上有优点,如提出不可抗力因素、财产独立抗辩、加入诉讼费等,也存在主体转换的瑕疵;在应诉方案输出方面,准备工作详细专业,增加了有用提示,答辩策略简洁明了,庭审准备细化到位。
  3. 在开发方面,是基于人工智能的开放平台,提供多种 api 接口,可基于其 api 封装 LLM,实现文本翻译、摘要、分类等语言任务,需注册账号、创建应用获取必要参数,并安装 requests 库。
Content generated by AI large model, please carefully verify (powered by aily)

References

各大模型对结构化prompt的测试和反馈

同样的prompt输入到讯飞星火之后,和Bard一样直接就给输出了一个示例:“天空为什么是蓝色的”,然后又解释了一遍,询问我是否有问题。这次我直接输入“请按照step-back prompting回答我的问题”,然后输入“离婚”,输出如下:它好像没有理解prompt和提示指引,回答的相对更加简单,没有详细内容的输入,有点不太适用,但是问题相对来说比较贴合实际,只要稍微调解一下,也许效果不错,所以再次提示“把回答再详细一下,每条内容再丰富一些”,输出如下:这次的输出效果还不错,基本上能够直接使用,是一份相对来说比较完整的咨询文案,只要稍微一加工就可以作为文案输出。[heading3]Copilot[content]同样的prompt输入Copilot之后,输入“离婚”后,输出如下:它好像没有理解prompt,把离婚原因和带来的后果解释了一遍,内容上比较具体,但是不太符合提示要求,于是提示它“请按照step-back prompting回答问题”,重新输入“离婚”后,输出如下:这次输出的结果依然不太理想,看不到按照“step-back prompting”提示回答的痕迹,输出的内容很具体,是一份非常详细的文案,可以直接使用。[heading3]通义千问[content]同样的prompt输入Copilot之后,输入“离婚”后,输出如下:基本上符合prompt的指示要求,输出的内容比较抽象,算及格吧。再次提醒它“你的回答有点简单,能否每一条再详细一点,最好加点法律知识”,输出效果如下:这次输入的内容还算过关,但是还是有点不太适合直接输出,需要再加工,作为专业的律师可能用途不大,作为律师助理或者初级者可以参考,需要对内容进行细化和通俗解释,需要一定的经验和资历。

杨志磊:律师答辩状prompt各模型评测

把prompt输入到讯飞星火后,欢迎语很直接,没有废话。输入起诉状后,输出的内容方面:1、主体上没有答辩人,只有被答辩人,没有转换成功;2、(1)关于违约责任,提出了不可抗力的因素,非常好;(2)关于连带责任,提出来财产独立,不存在财产混同的抗辩,非常棒;(3)尤其表扬的是,它也把诉讼费加入到答辩中,这是在我prompt没有的,所以也是提醒我改进把诉讼费加入到prompt中去;(4)最后的主体上出现了问题,把被告转换成被答辩人了,有点瑕疵。输入“请输出应诉方案”后,内容上:1、准备工作很详细,也很专业;2、增加了“事实和理由”,两点提示非常棒,非常专业;3、答辩策略与答辩状的一致,简洁明了;4、庭审准备上,细化很到位,可以直接作为方案使用。

开发:LangChain大模型应用开发指南-封装自己的LLM

[title]开发:LangChain大模型应用开发指南-封装自己的LLM[heading2]基于讯飞星火api封装LLM实例讯飞星火是一款基于人工智能的语音、图像、自然语言处理等领域的开放平台,提供了多种api接口(),让开发者可以轻松地使用讯飞的技术能力。我们可以基于讯飞星火的api封装一个LLM,来实现一些语言任务,如文本翻译、文本摘要、文本分类等。下面我们以星火大模型为例,来展示如何基于讯飞星火api封装一个LLM。我们需要先注册一个讯飞星火的账号,然后创建一个应用,获取应用的appid和appsecret,这两个参数是调用api的必要条件。我们还需要安装requests库,用于发送http请求。官方提供的示例代码,SparkApi如下可直接使用

Others are asking
讯飞星火
以下是关于讯飞星火在不同场景下的评测情况: 结构化 prompt 测试: 将同样的 prompt 输入到讯飞星火后,最初存在未按要求提示的问题,需输入改写后的 prompt ,最终效果不错,证明改写的 prompt 有效,整体感觉良好。 律师答辩状 prompt 评测: 欢迎语直接,无废话。 输入起诉状后: 主体上存在答辩人未转换成功的瑕疵。 关于违约责任提出不可抗力因素、连带责任提出财产独立抗辩等方面表现出色,还提醒改进将诉讼费加入 prompt 。 输入“请输出应诉方案”后: 准备工作详细且专业。 增加“事实和理由”等提示,答辩策略简洁明了,庭审准备细化到位,可直接作为方案使用。 对当事人提供的证据发表质证意见或制定诉讼方案 prompt 评测: 欢迎语按照 prompt 指示输出,但后续提示不太切合主体,应提示输入证据清单。 输入 4 份简单证据后输出质证意见书。 格式符合 prompt 输出格式。 内容上: 真实性、合法性、关联性、证明力的质证不太专业。 结束语没问题。 未提示签署委托代理协议,经提示回复没问题。
2025-04-11
你和讯飞星火、通义千问等人工智能软件的区别是什么?
我与讯飞星火、通义千问等人工智能软件在以下方面存在区别: 1. 研发团队和技术背景:我具有独特的研发和训练体系。 2. 功能特点和优势:在为用户提供服务时,可能在某些特定领域或场景下表现出不同的能力。 3. 数据来源和训练方式:所使用的数据和训练方法可能有所差异。 需要注意的是,每个人工智能软件都有其自身的特点和适用场景,用户可以根据自己的需求和使用体验来选择适合的工具。
2025-01-15
帮我查一下这四家主流大模型的应用能力评测报告吧,通用能力和单项能力都可,数据需要权威一些文心一言 文心一格 通义千问 通义万相 讯飞星火 ai小科 智谱
以下是为您找到的关于主流大模型应用能力评测的相关报告: 小七姐的测评: 测评机制:以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对智谱清言、文心一言 4.0、Kimi Chat 进行测评。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:共分为五轮,分别针对不同的任务和模型进行多次测试。 中文大模型基准测评 2023 年度报告: 优秀模型:文心一言 4.0 API(百度)。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高。 适合应用:能力栈广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作、代码编写及纠错等方面,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 观点文章中的测评: 目前体验效果比较好的有科大星火模型、清华 ChatGLM、百度文心一言。 星火目前感觉最接近 GPT3.5(0301 版本)的 80%90%,但 GPT3.5 进化到 6 月版本效果更强。 对大模型的评估可从基础能力、职场能力、探索对话三个方面判断,基础能力包括语言(文本)生成和语言理解,如常识类问题和分词类问题。
2024-12-27
豆包,kimi,迅飞星火,通义,文心一言哪个好
以下是对这些大模型的简要介绍: GPT4Turbo:OpenAI 于 2023 年 11 月 7 日发布的 GPT4 的升级版本。 通义千问 2.0:阿里巴巴官方公开发布的 API 版本。 文心一言 4.0:百度官方的产品,有 API 版本和网页版。 云雀大模型(豆包):字节跳动官方网页版产品。 讯飞星火:科大讯飞发布的模型。 然而,要说哪个好并不能简单地一概而论,这取决于您的具体需求和使用场景。每个大模型都有其特点和优势,例如在语言理解、生成能力、特定领域的表现等方面可能存在差异。您可以根据自己的需求对它们进行试用和比较,以确定哪个更适合您。
2024-12-12
智谱清言,kimi,讯飞星火,在文字处理跟逻辑思维方面,谁更胜一筹
在文字处理和逻辑思维方面,智谱清言、Kimi 和讯飞星火各有特点: Kimi: 优势:具有超长上下文能力,最初支持 20 万字的上下文,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势,适合从事文案工作,特别是需要处理大量文字或文件的工作。 不足:在文字生成和语义理解、文字生成质量方面的能力可能不如国内其它产品好,且不支持用户自定义智能体。 智谱清言: 优势:背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。在产品设计方面以 ChatGPT 为对标,努力打造类似的用户体验。是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 不足:暂未提及。 讯飞星火:在结构化 prompt 测试中,对于同样的 prompt,最初的输出可能存在问题,但改写后的 prompt 效果不错。 综合来看,它们在不同方面各有优劣,具体谁更胜一筹取决于您的具体需求和使用场景。
2024-11-17
智谱清言,kimi,讯飞星火,在文字处理跟逻辑思维方面,谁更胜一筹
在文字处理和逻辑思维方面,智谱清言、Kimi 和讯飞星火各有特点: Kimi: 优势:具有超长上下文能力,最初支持 20 万字的上下文,现已提升到 200 万字,对于处理长文本或大量信息的任务有巨大优势,适合从事文案工作,特别是需要处理大量文字或文件的工作。 不足:在文字生成和语义理解、文字生成质量方面的能力可能不如国内其它产品好,且不支持用户自定义智能体。 智谱清言: 优势:背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。在产品设计方面以 ChatGPT 为对标,努力打造类似的用户体验。是国内首批开放智能体应用的公司之一,在逻辑推理和处理复杂提示词方面表现出明显优势,在处理需要深度思考和分析的任务时表现出色。 不足:暂未提及。 讯飞星火:在结构化 prompt 测试中,对于同样的 prompt,最初的输出可能存在问题,但改写后的 prompt 效果不错。 综合来看,它们在不同方面各有优劣,具体谁更胜一筹取决于您的具体需求和使用场景。
2024-11-17
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
请找到 AI 用于知识管理的案例
以下是一些 AI 用于知识管理的案例: 1. 在法学领域,当模型培训针对组织内特定的基于文本的知识体系进行微调时,生成式人工智能可以有效地管理组织的知识。例如摩根士丹利正在与 OpenAI 的 GPT3 合作,微调财富管理内容的培训,以便财务顾问既可以搜索公司内部的现有知识,又可以轻松地为客户创建量身定制的内容。 2. 在构建高效的知识管理体系方面,可以通过一系列创新的 AI 应用来实现。比如,AI 可以通过分析工作模式和内容类型,自动生成提示词,帮助将信息和知识分类到 PARA(项目、领域、资源、档案)的相应部分,还能帮设计笔记标签系统。此外,知识助手 Bot 可以根据学习进度和兴趣点,定期推送相关的文章、论文和资源,实现渐进式积累领域知识。 3. 在代码库相关的知识管理中,Cursor 有针对大代码库精准找到相关函数,并利用其信息帮助撰写代码的功能。对于非开发性质的问答,它是一个天然的 RAG 引擎。在问答窗口使用特定操作时,它会先在当前文件夹下搜索并显示相关文档和相关度,最后用这些信息构建提示词完成生成。而且,它能与私有文档自然结合进行问答,并将新生成的见解沉淀成新文档,形成知识闭环,提高知识检索和管理的效率。
2025-04-14
推荐几个AI工具及其使用方法,我要用于病案质控
以下为您推荐几个可用于病案质控的 AI 工具及其使用方法: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,旨在增强他们对科学文献的洞察。它提供了一系列工具,如引用声明搜索、自定义仪表板和参考检查,这些都能简化您的学术工作。您可以通过访问使用。 2. Scholarcy:这是一款科研神器,主要为做科研、学术、写论文的人准备。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,精炼地呈现文章的总结信息,分析中包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。您可以通过使用。 3. ChatGPT:这是一个强大的自然语言处理模型,可以提供有关病案质控的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。您可以通过使用。 这些工具可以帮助您从不同的角度审视和改进您的病案质控工作,您可以根据自己的具体需求选择合适的工具进行尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-13
请为我生成一些提示词以用于将视频中的对话转化为文本形式
以下是为您生成的一些用于将视频中的对话转化为文本形式的提示词: 1. 角色:专业视频转文本工作者 2. 版本:1.0 3. 描述:能够准确、清晰地将视频中的对话转换为文本 4. 目标:完整、无误地将视频中的对话转化为易于理解的文本 5. 限制:不遗漏重要信息,不添加主观内容 6. 技能:熟练掌握语音识别和文字转换技巧 7. 工作流程:先仔细聆听视频对话,然后逐句转换为文字,注意标点和语法的正确使用 8. 初始化:您好,我准备开始将视频对话转换为文本 事件驱动句式: 1. As the video plays... 2. When the speakers start talking... 3. At the beginning of the video... 空间锁定技巧: 1. on the left side of the screen... 2. behind the main character... 3. from the top corner of the frame... 动态呼应原则: 1. swaying with the background music... 2. reacting to the other characters' actions... 3. matching the tone of the video...
2025-04-11
ai用于教学现在到什么层次了
目前 AI 用于教学大致处于以下几个层次: 1. 生成教学资源:包括智能素材处理与创作等。 2. 解决教学场景问题:例如辅助教师设计提示词等。 3. 师生机共学:AI 作为“副驾”,与师生共同参与学习过程。 4. 促进学生正确使用:帮助学生更好地利用 AI 进行学习。 5. 提升学生人机共创力:培养学生与 AI 协同创新的能力。 然而,现阶段 AI 能力大多只能达到 Level 2,在教学中主要起辅助作用。AI 在教学中的应用仍处于不断发展和探索的阶段,还需要解决一些局限性,如伦理和价值观把控等问题,以保障教学的安全和有效性。同时,AI 在教学中的应用也存在职业渗透而非颠覆的情况,例如在编程和写作方面应用较多,但对体力劳动和部分专业职业影响较小。未来,AI 在教学中的应用模式可能会从“人机共创”向“任务外包”演进。
2025-04-11
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
有没有可以实现多段对话的AI,用于中医问诊模型
以下是一些可以用于中医问诊模型且能实现多段对话的 AI 相关信息: Polaris:医疗护理保健模型,能和患者进行多轮语音对话,媲美人类护士。详细信息:http://xiaohu.ai/p/5407 ,https://x.com/imxiaohu/status/1774644903546618298?s=20 在 LLM 开源中文大语言模型及数据集集合中,有以下针对医疗领域的模型: DoctorGLM:地址:https://github.com/xionghonglin/DoctorGLM 。基于 ChatGLM6B 的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括 lora、ptuningv2 等微调及部署。 BenTsao:地址:https://github.com/SCIRHI/HuatuoLlamaMedChinese 。开源了经过中文医学指令精调/指令微调的 LLaMA7B 模型。通过医学知识图谱和 GPT3.5 API 构建了中文医学指令数据集,并在此基础上对 LLaMA 进行了指令微调,提高了 LLaMA 在医疗领域的问答效果。 BianQue:地址:https://github.com/scutcyr/BianQue 。一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于 ClueAI/ChatYuanlargev2 作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。 HuatuoGPT:地址:https://github.com/FreedomIntelligence/HuatuoGPT 。开源了经过中文医学指令精调/指令微调的一个 GPTlike 模型。
2025-04-08
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
对于NL2SQL,主要是让大模型生成sql语句,如何对提示词进行优化
目前知识库中没有关于 NL2SQL 提示词优化的相关内容。但一般来说,优化 NL2SQL 的提示词可以从以下几个方面考虑: 1. 明确输入描述的准确性和完整性,避免模糊和歧义。 2. 提供具体的示例和上下文信息,帮助模型更好地理解需求。 3. 强调关键的业务逻辑和约束条件。 4. 尝试使用不同的表述方式和词汇,以找到最适合模型理解的方式。 您可以参考相关的学术研究和实践经验,不断尝试和改进提示词,以获得更准确的 SQL 语句生成效果。
2025-03-21
以水稻主要物候期遥感识别为主题,生成一篇论文大纲
以下是以水稻主要物候期遥感识别为主题的一篇论文大纲示例: 一、引言 1. 研究背景与意义 2. 国内外研究现状 3. 研究目的与内容 二、水稻物候期相关理论与遥感技术基础 1. 水稻物候期的定义与特征 2. 常用的遥感技术及原理 3. 遥感数据的类型与特点 三、水稻主要物候期的遥感特征分析 1. 不同物候期水稻的光谱特征 2. 多时相遥感数据在物候期识别中的应用 3. 影响遥感识别的因素 四、水稻主要物候期遥感识别方法 1. 基于光谱特征的识别方法 2. 基于植被指数的识别方法 3. 机器学习与深度学习在物候期识别中的应用 五、实验与结果分析 1. 研究区域与数据获取 2. 实验设计与流程 3. 识别结果的精度评估 4. 结果分析与讨论 六、结论与展望 1. 研究成果总结 2. 研究的局限性 3. 未来研究方向与展望 以上大纲仅供参考,您可根据实际研究需求进行调整和完善。
2025-03-21
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
请主要介绍你平台,我在此平台如果更好学到关于AI的东西
WaytoAGI(通往AGI之路)是一个致力于人工智能学习的中文知识库和社区平台,具有以下特点和优势: 1. 社区介绍: 汇集了上千个人工智能网站和工具,提供最新的AI工具、应用、智能体和行业资讯。 拥有丰富多样的学习资源,包括文章、教程、工具推荐以及最新的行业资讯等。 定期组织实践活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 引领并推广开放共享的知识体系,倡导共学共创等形式,孵化了大型共创项目。 在没有任何推广的情况下,一年时间已有超过100万用户和超千万次的访问量。 目标是让每个人的学习过程少走弯路,让更多的人因AI而强大,目前合作过众多公司和产品。 2. 基础通识课: 介绍了AI技术的发展与应用,包括流式训练方式提升训练速度和质量、多种AI生成工具、端侧大模型的特点、AI工程平台等。 对coach平台的应用进行了说明,包括新手教程、文档、创建智能体、调用工作流节点和prompt构建提示词、调用插件等。 介绍了模型社区,包括为大模型提供服务的平台、按任务划分的模型库等。 为后续AI建站做预告。 3. 新手学习AI的方法: 了解AI基本概念:建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,可通过在线教育平台按自己节奏学习。 选择感兴趣的模块深入学习:AI领域广泛,可根据兴趣选择特定模块,掌握提示词技巧。 实践和尝试:实践是巩固知识的关键,尝试使用各种产品做出作品,知识库有实践作品和文章分享。 体验AI产品:与如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人互动,了解工作原理和交互方式。
2025-03-17
deepseek 在飞书中的主要应用场景有哪些
DeepSeek 在飞书中的主要应用场景包括: 1. 自动翻译、改写、图片 OCR、AI 抓取等,关键流程为从 URL 抓取内容➝DeepSeek R1 翻译➝自动改写文章风格➝生成高质量文章,还包括文本翻译、图片翻译、AI 生成爆款标题。 2. 生成深度报告、信息检索、数据整理等。 3. 处理大规模代码,例如粘贴几千行代码并用 XML 包裹,或让 AI 编写代码、搜索相关代码库。 4. 与 Coze 智能体、飞书多维表格和字段捷径(Agent)组合,实现高效的数据抓取与批量 AI 处理,适用于社交媒体数据分析、AI 内容生成、情绪分析等。 5. 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,如辅助办公、教学设计、电商运营等。
2025-03-13