Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

使用AGI类工具时,用户应该注意些什么

Answer

使用 AGI 类工具时,用户应注意以下几点:

  1. 理解工具:全面了解工具的应用场景和调用方法是有效使用的前提。利用 LLM 的 zero-shot learning 和 few-shot learning 能力,可通过描述工具功能和参数的 zero-shot demonstration 或特定工具使用场景和相应方法演示的少量提示来获取工具知识。面对复杂任务,应先将其分解为子任务,再组织和协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。
  2. 使用工具:学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习。包括模仿人类专家行为,了解行为后果,并根据环境和人类的反馈做出调整。环境反馈包括任务完成结果和环境状态变化,人类反馈包括显性评价和隐性行为。
  3. 关注工具选择:对于 Tools 类工具,开发者需选到合适的工具,并填写准确优秀的参数。可将业务上的 knowhow 转化为 Agent 的知识,提升工具使用的准确率,把精力放在这方面而非工程化上。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

AI-Agent系列(一):智能体起源探究

理解工具:AI Agent有效使用工具的前提是全面了解工具的应用场景和调用方法。没有这种理解,Agent使用工具的过程将变得不可信,也无法真正提高AI Agent的能力。利用LLM强大的zero-shot learning和few-shot learning能力,AI Agent可以通过描述工具功能和参数的zero-shot demonstartion或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这些学习方法与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,单一工具往往是不够的。因此,AI Agent应首先以适当的方式将复杂任务分解为子任务,然后有效地组织和协调这些子任务,这有赖于LLM的推理和规划能力,当然也包括对工具的理解。使用工具:AI Agent学习使用工具的方法主要包括从demonstartion中学习和从reward中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,以及了解其行为的后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。具身智能在追求人工通用智能(AGI)的征途中,具身Agent(Embodied Agent)正成为核心的研究范式,它强调将智能系统与物理世界的紧密结合。具身Agent的设计灵感源自人类智能的发展,认为智能不仅仅是对预设数据的处理,更多地来自于与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLM-based Agent不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动。这些Agent利用其内部丰富的知识库,进行决策并产生具体行动,以此改变环境,这一系列的行为被称为“具身行动”。

AI Agent产品经理血泪史(一):一年来我摸过的那些石头【Tools篇】

我跟小伙伴们一路关注着OpenAI各个版本模型能力的迭代,把模型能力摸的一清二楚。虽然官方没有任何明确的说明,但是从各版本模型迭代的路线来推断,Tools大概率是OpenAI押注AGI的方式。开头的报道截图其实也能够证明这点。可能有很多人对AI Agent的认知是从Plan-and-Execute开始的,比较有名的可能就是当时的AutoGPT,BabyAGI,以及国内一个项目Xagent。我不否认Plan Agent是一种解决问题的方式,但它绝对不是AI Agent该有的智能。这里就不展开去聊Plan Agent了,毕竟去年那些Plan Agent项目至今都很难有落地的。而Tools则是给了一种全新的解题思路。而开发者也只需要关注两个事情:1、选到合适的工具;2、填写准确(优秀)的参数;所有事情的优化,都可以从这两个方面下手。把业务上的knowhow,快速地转化为Agent的知识,提升它在上面两个事情的准确率,把精力放在这个事情上,而不是在工程化上。Sam虽然是个忽悠大王,但是有些话缺不无道理。有些模型迭代能去解决的问题,不要花太多精力去做,也许你哼哧哼哧搞几个月,还没上线下个版本模型就解决了。

Others are asking
什么是AGI
AGI 即人工通用智能,通常被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。 例如,OpenAI 的相关计划中,Q2025(GPT8)将实现完全的 AGI,但因一些原因有所推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。 在关于 AGI 实现后未来 20 年人类社会的变革的研究中,AGI 的出现被视为人类历史上具有转折意义的事件。 Sam Altman 认为,呈现人工通用智能特征的系统正浮现,人工通用智能通常指一种能够在许多领域内以人类水平应对日益复杂的问题的系统,它是人类进步脚手架上的另一个工具。
2025-04-18
什么是AGI
AGI 即人工通用智能,通常指能够完成任何聪明人类所能完成的智力任务的人工智能,其能力不局限于特定领域。例如,能够在许多领域内以人类水平应对日益复杂的问题。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。AGI 的出现被视为人类历史上具有转折意义的事件,当 AGI 真正实现并可能迅速发展为超人工智能(ASI)时,人类社会将在随后的二十年里经历深刻变革,包括社会结构、价值观、权力格局、人类角色等多个方面。我们的使命应是确保 AGI 造福全人类,从某种意义上说,AGI 是人类进步脚手架上的另一个工具。
2025-04-15
waytoagi 简单介绍
“通往 AGI 之路”(WaytoAGI)是一个致力于人工智能学习的中文知识库和社区平台: 旨在为学习者提供系统全面的 AI 学习路径,涵盖从基础概念到实际应用的各个方面,帮助用户有效地获取 AI 知识,提高自身能力。 由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。 定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 其品牌 VI 融合了独特的设计元素: 选择彩虹色作为主要的配色方案,代表多样性、包容性和创新。 标志性图案是一只鹿,与“路”谐音,象征着通往 AGI 未来的道路,寓意优雅与智慧。 选用简洁现代的非衬线字体,强调信息传达的清晰度和直接性。 此外,WaytoAGI 里有个离谱村: 是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易、更感兴趣。 参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。 离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。 如果您对 AI 学习感兴趣,加入“通往 AGI 之路”社区将是一个不错的选择。在这里,您可以获取最新的 AI 知识,参与实践活动,与志同道合的学习者共同成长。
2025-04-14
我想将常用的AI入口手机放在一张网页上,该如何设置waytoAGI页面
以下是关于将常用的 AI 入口放在一张网页上设置 WaytoAGI 页面的方法: 1. 点开链接就能看:不用注册,不用花钱,直接点击。 2. 想看啥就看啥:比如您想学 AI 绘画,就去看“AI 绘画”部分;想找 AI 工具,就去“工具推荐”部分。内容分得清清楚楚,想学啥都能找到。 3. 有问题还能问:如果看了还有不懂的,或者想跟别人交流,可以加入社群,大家一起讨论。 另外,关于使用 Cursor 制作您的第一个主页: 1. 在搞定一个非常简单的小游戏之后,可以做一个自己的个人介绍网站。可以先看看官网,比如 allinagi.com.cn、sboat.cn。假设要做一个《全 AI 自动驾驶的火星登陆飞船》项目,首先会有一个初步简单的项目介绍,比如 WaytoMars 是一个制造、运营全 AI 自动驾驶的火星登陆飞船公司品牌,有着领先全球的技术实力、人才优势,预计在 2030 年推出可承载上千人,五星豪华级的全 AI 自动驾驶的火星登陆飞船。有了项目介绍后,让 AI 帮助生成一个具有前端大师级审美、极富科幻感的网站首页。首先,新建一个 waytomars 文件夹并打开,在 AI 对话框中输入上述的话,一路等待 AI 制作以及加入您的修改意见即可。 2. 如何让别人看到您的作品预览:通过将项目文件夹整体上传,就可以生成一个临时浏览链接,在不需要域名和服务器的情况下让外部也能够看到您的作品。注意:如果发现 cursor 有所卡顿,注意是不是 AI 让您在终端区或者对话区确认重要操作,左下角将 ask every time 修改为 auto run 就可以全自动化了。 WaytoAGI 就是一个帮您快速入门 AI、学会用 AI 搞事情的“武器库”。不管您是完全不懂 AI 的小白,还是想用 AI 赚钱的普通人,它都能帮到您。AI 是未来的趋势,现在学一点都不晚,如果您想了解 AI、用 AI、甚至靠 AI 搞钱,WaytoAGI 就是您最该看的“AI 宝典”。
2025-04-14
WaytoAGI:找到了AI知识付费的免费源头,让更多人因AI而强大!
WayToAGI(通往AGI之路)是一个由热爱AI的专家和爱好者共同建设的开源AI知识库。它具有以下特点和优势: 1. 整合了各种AI资源,让大家能轻松学习AI知识,应用各类AI工具和实战案例。 2. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等的详尽教程。 3. 时刻追踪AI领域最新进展并更新,每次访问都有新收获。 4. 涵盖丰富的内容,包括AI视频、AI绘画、AI音乐、AI艺术、AI即兴戏剧、AI Agent共学等。 5. 为用户提供全面系统的AI学习路径,辅助思考,让学习过程少走弯路。 6. 自 2023 年 4 月 26 日诞生,在无推广情况下,一年已有超 70 万用户和超千万次访问量。社群的口号是让更多的人因 AI 而强大,有很多学社和共学共建的活动。访问“waytoagi.com”即可找到社群。
2025-04-12
身份是小学语文老师,如何自学waytoAGI
以下是为您整理的相关内容: 1. 10 月 9 日小作业中提到:熟悉 waytoagi 知识库,并找到 Prompt 提示词框架文章,给出两个提示词框架和生成结果。框架一是“CRISPE 框架”,处理小学六年级同学丢钱引发的同桌纠纷,给出三种解决方式,包括调查真相、教育双方,全班寻找失物、避免误解,引导调解与反思。生成结果为详细的解决步骤。同时提到人工智能时代的三个基石是数据、算法、算力,数据和算法可在开源数据库等找到,算力可在云计算平台如 AWS、Google Cloud、Microsoft Azure 找到。 2. 6 月 11 日 AI 秒学团队中,有人分享了搭建聊天功能工作流的经历,提到在实践中不断迭代、调整和优化。一位纯社科背景的高校老师感谢 way to AGI 带文科生进入 agent 的“坑”,并提到小团队给予的帮助。 3. 问卷中,刘翔宇表示自己是国内一线互联网 AI 产品经理,愿意共同维护 WaytoAGI 开源社区,学习目标是了解 Comfy 基础理论等多方面,所在城市为北京。
2025-04-12
目前有哪些AI可以支持对用户上传的视频进行理解分析?
目前以下 AI 可以支持对用户上传的视频进行理解分析: 1. Gemini 2.0 Flash Thinking:是解析视频的不错选择,可在 AIStudio(访问 aistudio.google.com,需海外 IP)上传视频进行解析。 2. MiniMax 视频模型:能准确识别用户上传的图片,生成的视频在形象保持、光影色调、指令响应、表情呈现等方面表现出色,还支持 2000 字提示词以更精准调控。 3. 百炼大模型平台:应用广场里的影视传媒视频理解能力可对视频进行语音转写、视觉语言分析等处理并总结成文,有清晰使用步骤,还能根据偏好调试提示词。
2025-04-09
excel表格导出的用户的对话记录,来进行自定义标签并打标,有哪些好用的现成方案或者工具
目前在 Excel 表格导出的用户对话记录进行自定义标签并打标方面,以下是一些常见且好用的工具和方案: 1. Microsoft Excel 本身:可以利用其数据筛选、排序和函数功能来辅助标签和打标。 2. Google Sheets:具有类似 Excel 的功能,且在线协作方便。 3. R 语言:通过编程实现复杂的数据分析和标签处理。 4. Python 及相关库,如 Pandas:能够灵活处理数据和进行标签操作。 但具体选择哪种方案或工具,取决于您的具体需求、技术水平和使用习惯。
2025-04-07
如果面试AI产品经理岗位,我的简历应该如何介绍对应的AI项目?目前我在做的是一个AI深度解读的功能,用户通过报告页面进行深度解读,进入后触发AI与用户的沟通,根据沟通信息,将用户的一些情况写在病历信息中,最终发给医生
以下是为您提供的一些参考,帮助您在面试 AI 产品经理岗位时介绍对应的 AI 项目: 在您所做的 AI 深度解读功能项目中,可以从以下几个方面进行介绍: 项目背景:阐述开展该项目的原因和目标,例如为了提升医疗服务的效率和准确性,满足用户对深度医疗解读的需求等。 项目职责:详细说明您在项目中的具体职责,如需求分析、产品规划、与开发团队协作、与用户沟通获取反馈等。 技术实现:描述项目中所运用的关键技术,如触发 AI 与用户沟通的机制、如何将用户信息写入病历等。 用户体验优化:提及为提升用户体验所采取的措施,比如优化报告页面的设计、提高 AI 沟通的自然度和准确性等。 成果与效益:展示项目取得的成果,如提高了医生的诊断效率、提升了用户满意度等。 此外,您还可以参考以下其他相关人员的项目经验: 秦超作为 AI 2C 项目负责人,在产品落地服务方面具有丰富的经验,包括产品、技术架构以及项目管理等。 Cici?在 AI 算法开发领域,将宠物与 AI 结合,具备 AI 产品研发和创业经验。 11 鸭鸭呀作为产品经理,在智能写作产品方面有 Prompt 撰写和 AI 应用的经验。 枫 share 作为产品经理,熟悉 ChatGPT,写过 prompt,使用过多种 AI 创作工具,并正在寻找 AI 方向的产品岗位。 行远作为产品经理,熟悉 prompt,部署过多种绘图项目,使用过多款 AI 创作工具,期待学习和实战案例应用。 希望以上内容对您有所帮助,祝您面试成功!
2025-04-01
罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?按照时间线将以上内容梳理出来
以下是按照您的需求梳理的内容: 时间线 早期: 从图灵测试、早期的图灵机器人和 ELISA 开始,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统。 近年来: OpenAI 发布 ChatGPT 模型,引发用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。Scaling Law 泛化,推理能力成为关键,倒逼计算和数据变革。AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 在应用方面,AI 在文科白领的个人助理、呼叫中心、文本处理和教育等领域表现出色,能完成 80%到 90%的工作;对于工科白领,特别是程序员,能简化代码检索和调整;在蓝领领域,自动驾驶取得显著进展。但在复杂任务方面仍有改进空间。 第一轮洗牌结束,聚焦 20 赛道 5 大场景,多领域竞速中运营大于技术,AI 助手成为竞争重点。AI+X 赋能类产品发展迅速,原生 AI 爆款难求。多模态上马,Agent 席卷一切,高度个性化呼之欲出。 人工智能发展经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。大模型由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要。 未来: 李沐预测技术发展可能催生出革命性的应用形态,但 AI 离真正变革世界还有一段距离。 预计 AI 在蓝领工作的初步应用至少需要 5 年时间。 AI 技术创新点: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化:推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索:视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 技术的发展趋势: 模型架构不断优化和融合。 更加注重推理能力的提升。 探索 AGI 领域,实现虚拟和现实的统一。 应用格局不断洗牌,聚焦特定赛道和场景。 多模态和 Agent 技术的广泛应用。 对用户交互体验的改变: 用户习惯从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 AI 应用为用户提供辅助,在多个领域帮助完成任务。
2025-03-31
AI技术发展时间线,罗列具体的AI模型产品和具体的AI技术创新点,并总结AI技术的发展趋势,并说明这些发展趋势为用户的交互体验带来了什么样的改变?
以下是关于 AI 技术发展的相关内容: AI 技术发展时间线: 从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段。 具体的 AI 模型产品: ChatGPT 改变了用户习惯,从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 具体的 AI 技术创新点: 大模型创新方面,架构优化加速涌现,融合迭代成为趋势。 Scaling Law 泛化,推理能力成为皇冠明珠,倒逼计算和数据变革。 AGI 探索中,视频生成点燃世界模型,空间智能统一虚拟和现实。 AI 技术的发展趋势: 大模型创新:架构优化加速涌现,融合迭代大势所趋。 应用格局:第一轮洗牌结束,聚焦 20 赛道 5 大场景。 应用竞争:多领域竞速运营大于技术,AI 助手兵家必争。 应用增长:AI+X 赋能类产品大干快上,原生 AI 爆款难求。 产品趋势:多模态上马,Agent 席卷一切,高度个性化呼之欲出。 智变千行百业:左手变革生产力,右手重塑行业生态。 行业渗透率:数据基础决定初速度,用户需求成为加速度。 创投:投融资马太效应明显,国家队出手频率提升。 对用户交互体验的改变: ChatGPT 使用户从简单触控操作转向更复杂的长文本输入,未来可能延伸至长语音交互。 在文科白领方面,AI 能完成 80%到 90%的工作,如个人助理、呼叫中心、文本处理和教育等领域。 对于工科白领,特别是程序员,AI 能简化代码检索和调整。 在蓝领领域,AI 在自动驾驶方面取得显著进展。
2025-03-31
如何生成一个根据用户输入的需求推荐旅游地点的智能体
要生成一个根据用户输入的需求推荐旅游地点的智能体,可以参考以下几种方式: 小众打卡地智能体: 基本信息:名称为“小众打卡地”,链接为 https://tbox.alipay.com/pro/share/202412APCyNn00194489?platform=WebService 。 核心价值:为用户发掘非大众化的特色景点,避开人流;提供个性化的旅行建议,并有目的地的图片参考;帮助用户快速获取高质量的旅行参考信息;提供小红书文案,也适合发小红书。 搭建思路重点:录入小红书的相关文案参考知识库;通过文本模型组成搜索词进行搜索,从搜索到的所有网页链接中,通过代码节点提取相关的 url,滤除需要安全认证的网站,挑选非周边城市攻略推荐,尽量检查“小众”或“冷门”;通过 url 网页正文提取相关的小众地点输出,同时通过代码进行打卡点的字符串输出用于后续节点运用;根据需要搜索的小众旅行地进行图片搜索,随机提取一条图片的 url,过滤部分失效的网站;最后的文案输出适合小红书文案和旅行发布参考。 旅行青蛙智能体: 搭建过程开源: 意图分支 1(随机旅行):根据用户的坐标和触发事件,推荐当季适合的旅行景点。可以用大模型实现这一功能(小白适用),也可以用代码或者知识库的方式进行随机抽取。为了让大模型每次输出的地点尽量不同,可以拉高多样性的值。 大模型节点(旅行日记):设定字数、风格,入参是触发事件和上一个大模型输出节点的结果。 大模型节点(为你写诗):添加输入项。 大模型节点(文生图提示词):这个节点是固定前缀提示词,再根据地点和季节进行其它信息的补充。添加输入项。 城市探险家智能体: 智能体功能实现: 基础功能模块: 城市信息库:包括城市基础信息(地理位置、人口、气候等)、文化特色(历史传统、本地习俗、节日活动)、旅游资源(景点、美食、住宿、交通)、实用信息(最佳旅行季节、注意事项、消费水平)。 积分系统:完成探索后获取探索点数,获取方式包括主要景点探索、美食品鉴、文化体验、历史探索、交通探索、隐藏景点发现。 称号系统:等级划分有旅途新手(0 点)、城市漫游者(20 点)、文化探索者(50 点)、环球冒险家(100 点)、旅行大师(200 点)。 推荐系统:基于用户历史分析用户已探索城市类型;根据当前季节推荐适合城市;根据用户兴趣推荐主题路线;结合用户偏好进行个性化定制推荐。 交互功能实现:对话流程包括用户输入城市名称、智能体分析城市类型、生成个性化城市介绍、计算并更新探索点数、检查称号解锁、推荐相关城市。 完整 prompt:先定义好各子系统的规则;在对话流程中调用子系统;测试 prompt 效果,迭代 prompt;调试到理想的输出效果后,开始固定输出模板(在 prompt 内加入输出模板示例);继续测试,直至稳定。
2025-03-31
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
根据简历,模拟面试的工具
以下是一些根据简历进行模拟面试的工具: 1. Kimi 新出的常用语功能中有“【🎤面试模拟】”,它可以作为私人面试 mock 伙伴,根据简历信息和求职岗位进行模拟面试。 2. 通过让 ChatGPT 接入 Siri 可以模拟前端电话面试。具体操作是首先按照特定文章接入,然后在手机上唤起 ChatGPT 版本的 Siri 并设定身份和对话目的,如让其作为一位来面试的前端高级开发工程师,接着依次提问。 3. ChatGPT 可以更高效地辅助复习面试,您可以把问题给到 ChatGPT 让它帮您生成答案,并展示 demo 和解释,帮助您更好地掌握知识。相关文档在线地址:https://xzfeinterview.gitbook.io/feinterview/readme
2025-04-18
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
那些ai工具可以world转pdf
以下是一些可以将 Word 转换为 PDF 的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-04-15
作图的ai工具
以下是一些常见的作图 AI 工具: 绘制软件架构视图(逻辑视图、功能视图、部署视图)的工具: Lucidchart:流行的在线绘图工具,支持多种图表创建,有拖放界面方便创建架构图。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种视图创建。 PlantUML:文本到 UML 转换工具,可通过描述文本生成逻辑视图相关图表。 Gliffy:基于云的绘图工具,支持创建架构图。 Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型。 Rational Rose:IBM 的 UML 工具,支持逻辑视图和部署视图创建。 绘制 CAD 图的工具: CADtools 12:Adobe Illustrator 插件,添加绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件。 nTopology:基于 AI 的设计软件,帮助创建复杂 CAD 模型。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,自动生成 3D 模型。 主流 CAD 软件(如 Autodesk 系列、SolidWorks 等)中的生成设计工具。 此外,Controlnet 的作者 lllyasviel(张吕敏)在 Github 上发布了全新的开源 AI 绘画工具 Fooocus,可像 Stable diffusion WebUI 一样部署到本地免费使用,且有类似 midjourney 的便捷操作界面。
2025-04-15
装修设计可以使用哪些AI工具
以下是一些可用于装修设计的 AI 工具: 1. 酷家乐装修设计软件:利用图像生成和机器学习技术,为用户提供装修设计方案,用户可根据喜好选择和调整。 2. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 3. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 4. nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 5. ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 6. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供基于 AI 的生成设计工具,可根据输入自动产生多种设计方案。 7. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster。 8. Maket.ai:面向住宅行业,在户型和室内软装设计方面有探索,能根据输入自动生成户型图。 9. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期引入标准和规范约束生成的设计结果。 10. Fast AI 人工智能审图平台:形成全自动智能审图流程,将建筑全寿命周期内信息集成,实现数据汇总与管理。 但每个工具都有特定应用场景和功能,建议根据具体需求选择合适的工具。
2025-04-15
我是官媒,我现在要纳新ai职能组,对招聘人员有什么纳新要求,注意招聘范围在大一到大四的学生
以下是针对官媒纳新 AI 职能组大一到大四学生的纳新要求: 1. 技术要求: 必:熟悉 Python 开发。 选:熟悉一些常用开发框架,比如 Flask、Gradio、Pytorch、Huggingface、LangChain、LlamaIndex。 必:了解深度学习、大语言模型底层原理。 选:了解预训练、微调基本原理和优化。 选:了解 RAG、Agent 基本原理和优化。 加分:了解音频、语音模型开发领域。 2. 其他要求: 对 AI 驱动的开发感兴趣。 实习时长不少于 6 个月。 大学英语六级 450 分/雅思 6.0 分。 目前就读学校为双一流/海外前 200。
2025-04-09
线性注意力机制与多头潜在注意力机制
线性注意力机制和多头潜在注意力机制是人工智能领域中重要的概念。 线性注意力机制是一种注意力机制的类型,其特点和具体实现方式会因不同的模型和应用场景而有所差异。 多头潜在注意力机制(MLA)在一些模型中得到应用,例如 DeepSeek 模型。DeepSeekV2 就以多头潜在注意力机制架构的创新在硅谷引发了轰动。 在 Transformer 模型中,常见的注意力机制包括自注意力机制、多头注意力机制等。自注意力机制能够同时考虑输入序列中所有位置的信息,通过动态分配注意力权重来捕捉序列中的关系和依赖。位置编码用于使模型能够区分不同位置的词语。多头注意力机制可以并行地学习多个注意力表示,从不同子空间中学习不同特征表示。 DeepSeek 模型在发展过程中,不断应用和创新注意力机制。如 2024 年 5 月发布的 V2 采用了混合专家模型(MoE)和多头潜在注意力机制(MLA)技术,大幅降低了模型训练特别是推理的成本。2024 年 12 月发布的 V3 以低成本实现了高性能,成为其发展的里程碑。
2025-03-28
使用RAG要注意什么?
使用 RAG 时需要注意以下几点: 1. 不能随意输入任何文档就期望得到准确回答。尽管 RAG 的基本概念不难理解,但有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等,这些都需要专业知识和持续优化。 2. RAG 不能完全消除 AI 的幻觉。虽然它可以显著减少幻觉,但模型仍可能在检索到的信息基础上进行不当的推理或生成错误信息,只要有大模型参与,就有可能产生幻觉。 3. RAG 仍然消耗大模型的 Token。从流程上看,最终还是将知识库中检索的结果给到 LLM,然后由 LLM 进行重新整理输出。 4. 从评估角度看,如果检索到的知识是无效的,会严重影响 LLM 应用的表现,因此将检索过程的精确度和召回率与整个 LLM 应用程序分开进行研究尤为重要。 5. RAG 存在局限性,它适合打造专才,不适合打造通才,能够为模型提供新的信息、专有领域知识等,但并不适合为模型提供通用领域知识。同时,在让模型保持稳定的风格或结构输出、降低 token 消耗等方面存在不足,这两点需要使用微调技术解决。
2025-03-25
构建知识库有什么要注意的?
构建知识库时需要注意以下几点: 1. 在使用在线检索流程生成结果时: 重排序的结果通常因大模型上下文有限制而不会都被使用,可以设置阈值进行截断,如只使用前 3 5 个文档,或只取相关性分数大于某个值的文档。 一些先进的 RAG 系统会对选中的文档进行摘要或压缩,以在有限空间内包含更多相关信息。 2. 对于后置处理,可能包括敏感内容检测和移除、格式化输出等。 3. 创建智能体的知识库时: 手动清洗数据可提高准确性,如创建画小二课程的 FAQ 知识库时,飞书在线文档中每个问题和答案以分割。 对于本地文档,不能一股脑全部放进去训练,应先放入大的章节名称内容,再按固定方式细化处理。 4. 使用 Coze 搭建知识库时: 文档的分片策略会严重影响查询结果,RAG 方案存在跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等问题。 希望以上内容对您有所帮助。
2025-03-25
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
知识库搭建注意事项
以下是关于知识库搭建的注意事项: 1. 数据清洗方式: 可选择手动清洗数据以提高准确性,避免自动清洗数据可能出现的不准确情况。 对于本地文档,要注意合理拆分内容以提高训练数据准确度,不能将所有内容一股脑放入训练。 2. 在线知识库: 点击创建知识库,可创建如画小二课程的 FAQ 知识库。 飞书在线文档中每个问题和答案以分割,可点击编辑修改和删除。 选择飞书文档,选择自定义的自定义,输入。 点击添加 Bot 并在调试区测试效果。 3. 本地文档: 对于本地 word 文件,要注意拆分内容的方法。例如,对于画小二课程,将 80 节课程分为 11 个章节,先放入大章节名称内容,再按固定方式细化章节内详细内容。 选择创建知识库自定义清洗数据。 4. 发布应用: 点击发布,确保在 Bot 商店中能够搜到,否则无法获取 API。 5. 文档格式和分片策略: 以创建外贸大师产品的帮助文档知识库为例,可选择使用 Local doucuments 方式上传 Markdown 格式文档,每个问题以开头。 文档的分片策略会严重影响查询结果,RAG 方案存在跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等缺点。 此外,在信息管理和知识体系搭建中,“拎得清、看得到、想得起、用得上”是四个核心步骤: 1. 拎得清:主动选择和判断高质量、与目标相关的信息源,利用 AI 搜索引擎筛选信息,加入优质社群、订阅号等建立信息通路。 2. 看得到:确保所选信息能频繁且不经意地触达个人,通过浏览器插件、笔记工具等组织信息,使其易于检索和浏览。 3. 想得起:做好信息的索引和关联,存储时做好标记(关键词、tag)、选择合适存放位置,推荐使用 PARA 笔记法等方法组织串联信息。 4. 用得上:将积累的知识转化为实际行动和成果,在解决问题或创造价值时从知识库中调取相应信息。
2025-03-17