Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

生成式搜索和知识问答的区别

Answer

生成式搜索和知识问答存在以下区别:

  • 生成式搜索:
    • 采用大型语言模型技术,能更好地理解用户自然语言查询的语义,不仅仅是匹配关键词。
    • 可以生成通顺的自然语言回答,而非简单返回网页链接和片段,结果更易于理解和使用。
    • 能够根据用户的历史查询和偏好个性化结果,提供更贴合需求的答复。
    • 例如 Perplexity 等 AI 搜索引擎,通过收集各种来源的信息给出答案。
    • 但存在训练成本高、可解释性差、潜在偏差和不当内容等问题。
  • 知识问答:
    • 例如 RAG ,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。
    • 原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。
    • 一些知识问答系统能够支持在本地运行。

此外,为您推荐一些 AI 搜索引擎:

  • 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能。
  • Perplexity:聊天机器人式搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术收集信息并给出答案。
  • 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。
  • 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持多模态搜索。
  • Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。
  • Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。
  • Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。

需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:Perplexity AI 如何?

Perplexity AI是一家专注于开发新一代AI搜索引擎的公司,创立于2022年8月,由前OpenAI研究科学家Aravind Srinivas与前Meta研究科学家Denis Yarats(Perplexity CTO)等合伙人共同创办。它的搜索引擎采用了大型语言模型(LLM)技术,可以更好地理解和回答用户的自然语言查询。优势理解能力强:Perplexity的LLM模型能够深入理解查询的语义,而不仅仅是匹配关键词,从而提供更准确和相关的结果。生成式回答:它可以生成通顺的自然语言回答,而不是简单返回网页链接和片段。这使得结果更易于理解和使用。个性化和上下文感知:Perplexity可以根据用户的历史查询和偏好来个性化结果,提供更加贴合需求的答复。劣势训练成本高:训练大型LLM模型需要大量的计算资源和高质量的训练数据,成本可能较高。可解释性差:LLM的工作原理较为黑箱,很难解释为什么会给出某个结果,缺乏透明度。潜在的偏差和不当内容:由于训练数据的局限性,LLM可能会产生偏见或不当内容。独特之处Perplexity将LLM技术应用于搜索引擎领域,试图颠覆传统的基于关键词匹配的搜索范式,为用户提供更自然和智能的搜索体验。它还融合了个性化和上下文感知等功能,努力成为新一代的"智能助手"。总的来说,Perplexity凭借LLM的强大语义理解能力,为搜索引擎带来了新的可能性,但也面临着一些技术和伦理挑战。原问题:Perplexity AI如何?谁开发的?其优劣势是?有什么独特之处?

02-基础通识课

[heading2]总结大语言模型及多模态大模型的应用与原理RAG的原理和应用:RAG通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务,其原理是在基础大模型基础上引用外部数据,对搜索到的数据信息进行切片、拆分和语义理解,再根据用户提问进行检索和回答,但比基座模型更耗时。RAG可在本地运行:RAG是一个检索生成框架,能够支持在本地运行。AI搜索的能力:AI搜索结合了多种能力,如fine tuning、实时联网查询和查询知识源等,能够为用户整理出想要的内容,一些AI搜索平台专注于特定领域,如为程序员提供代码搜索。多模态大模型的特点:多模态大模型像能唱会跳、精通多种技能的机器人,能看见、听见、思考、说话,例如能识别物体、听取指令等。生成式模型和决策式模型的区别:决策式模型偏向逻辑判断,按预设程序固定输出;生成式模型偏随机性,能动态组合并结构化呈现,如在图像识别中,决策式模型返回关键词,生成式模型用语言表达结构化信息。

问:AI 搜索引擎

以下是一些推荐的AI搜索引擎:1.秘塔AI搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。2.Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式AI技术从各种来源收集信息并给出答案。3.360AI搜索:360公司推出的AI搜索引擎,通过AI分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。4.天工AI搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。5.Flowith:一款创新的AI交互式搜索和对话工具,基于节点式交互方式,支持多种AI模型和图像生成技术,提供插件系统和社区功能。6.Devv:面向程序员的AI搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。7.Phind:专为开发者设计的AI搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。这些AI搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。内容由AI大模型生成,请仔细甄别

Others are asking
浅谈“生成式人工智能在中职实训课的应用”
生成式人工智能在中职实训课的应用: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,所生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如: 文档摘要:将长篇文章或报告总结为简短、精准的摘要。 信息提取:从大量数据中识别并提取关键信息。 代码生成:根据用户的描述自动编写代码。 营销活动创建:生成广告文案、设计图像等。 虚拟协助:例如智能聊天机器人、虚拟客服等。 呼叫中心机器人:能够处理客户的电话请求。 生成式人工智能的工作方式如下: 1. 训练阶段:通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。 2. 应用阶段:基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Google Cloud 提供了相关工具,如 Vertex AI 是端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型;Generative AI Studio 允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少;Model Garden 是一个平台,可以让用户发现 Google 的基础和第三方开源模型,并与之交互,它提供了一组 MLOps 工具,用于自动化机器学习管道。 在教育领域,从 AI 助教到智慧学伴的应用探索中,以“移动教学与促动”课程实习周为例,让教育学专业的学生了解和尝试运用教育 APP、二维码、教育游戏等技术方式开展移动教学。课程实习需要在 5 天内让非技术背景的学生分组设计课程并展示,由于学生众多,教师难以给予个性化指导,而 AI 在一定程度上补足了学生缺乏的经验。
2025-03-31
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
生成式AI的教育重构价值
生成式 AI 在教育领域具有重要的重构价值,主要体现在以下几个方面: 1. 为教师减负:通过复杂的算法、模型和规则,从大规模数据集中学习,创造新的原创内容,帮助教师减轻工作负担。 2. 创新教学方式:例如让历史人物亲自授课,知识获取不再受时空限制,提高教育效率和质量,增强学生学习兴趣。 3. 个性化教育:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,满足学生学习需求,提高学习成果,缓解教育资源不平等问题。 4. 角色多样化:授课教师、游戏玩家、情感伴侣等服务都可以被 AI 重构。 5. 促进学生成长:人工智能生成的虚拟角色可以作为数字陪伴,给予孩子社会奖励,促进其成长和提高学习成绩。
2025-03-22
Stable Diffusion、MidJourney、DALL·E 这些生成式AI工具有什么区别
Stable Diffusion、Midjourney 和 DALL·E 这三个生成式 AI 工具主要有以下区别: 1. 开源性:Stable Diffusion 是开源的,用户可以在任何高端计算机上运行。 2. 学习曲线:Midjourney 的学习曲线较低,只需键入特定的提示就能得到较好的结果。 3. 图像质量:Midjourney 被认为是 2023 年中期图像质量最好的系统。 4. 应用场景:Stable Diffusion 特别适合将 AI 与来自其他源的图像结合;Adobe Firefly 内置在各种 Adobe 产品中,但在质量方面落后于 DALL·E 和 Midjourney。 5. 训练数据:这些工具都是使用大量的内容数据集进行训练的,例如 Stable Diffusion 是在从网络上抓取的超过 50 亿的图像/标题对上进行训练的。 6. 所属公司:DALL·E 来自 OpenAI。 在使用方面: 1. Stable Diffusion 开始使用需要付出努力,因为要学会正确制作提示,但一旦掌握,能产生很好的结果。 2. DALL·E 已纳入 Bing(需使用创意模式)和 Bing 图像创建器,系统可靠,但图像质量比 Midjourney 差。 3. Midjourney 需要 Discord,使用时需键入特定格式的提示。
2025-03-20
生成式人工智能的提示词工程
生成式人工智能的提示词工程是一门新兴学科,在生成式 AI 模型中具有重要作用。 提示词是用户与模型沟通愿望的文本界面,适用于图像生成模型(如 DALLE3、Midjourney)和语言模型(如 GPT4、Gemini)等。它可以是简单的问题,也可以是复杂的任务,包括指令、问题、输入数据和示例,以引导 AI 的响应。 提示词工程的核心是制作能实现特定目标的最佳提示词,这不仅要指导模型,还需深刻理解模型的能力和局限性及所处上下文。例如,在图像生成模型中是对期望图像的详细描述,在语言模型中可能是复杂查询。 提示词工程不仅是构建提示词,还需结合领域知识、对 AI 模型的理解及系统化方法为不同情境定制提示词,可能包括创建可根据数据集或上下文程序化修改的模板。 此外,提示词工程是迭代和探索的过程,类似于传统软件工程实践,如版本控制和回归测试。该领域发展迅速,有潜力改变机器学习的某些方面。 在商业和社会中,提示词工程师是被炒作的职位,实际可能承担了机器学习工程师的部分职责。提示词工程是一切生成式 AI 的基础,不管用于学习、写作、绘画、编程还是玩音乐等。 在使用提示词时,要记住几个基本关键点: 1. 角色/身份:告诉 AI 它需要扮演的身份,提升其“职业素养”。 2. 目标/任务以及背景:所有对话都有目的性,要交代目标背后的逻辑,包括为什么要实现目标、希望达到的结果等。
2025-03-19
生成式AI
生成式 AI(Generative AI)是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。 AIGC(AI generated content)意为人工智能生成内容,又称为生成式 AI。例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。能进行 AIGC 的产品项目和媒介很多,包括语言文字类(如 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等)、语音声音类(如 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等)、图片美术类(如早期的 GEN、去年大热的扩散模型带火的 Midjourney、先驱者谷歌的 Disco Diffusion、OpenAI 的 Dalle·2 以及 stability ai 和 runaway 共同推出的 Stable Diffusion 等)。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7)。源代码库:github.com/StabilityAI/stablediffusion 。 国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管 AIGC 行业。 Gen AI/Generative AI 是“生成式人工智能”正式称呼,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而 AIGC 指的是由人工智能生成的内容的创作方式,实际上是 Generative AI 的应用结果。 ChatGPT 在 2022 年宣发时,OpenAI 称其是一种模型,但在官网的帮助页面中,称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2025-03-19
想创建一个对话问答形式的课程智能体
以下是创建一个对话问答形式的课程智能体的相关内容: 一、创建智能体 1. 知识库 手动清洗数据:本次创建知识库使用手动清洗数据,上节课程是自动清洗数据,自动清洗数据可能会出现数据不准的情况。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以分割,选择飞书文档、自定义的自定义,输入后可编辑修改和删除,添加 Bot 后可在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。画小二 80 节课程分为 11 个章节,不能一股脑全部放进去训练,应先将 11 章的大章节名称内容放进来,章节内详细内容按固定方式人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到,否则获取不到 API。 二、智谱 BigModel 共学营活动分享 活动内容包括使用 BigModel 搭建智能体并接入微信机器人,过程为将调试好的智能体机器人拉入微信群,由老师提问,机器人回答,挑选出色回答整理成问卷,群成员投票,根据得票数确定奖项。一等奖得主分享了对活动的理解和实践,包括从题出发的分析,认为考验机器人对问题的理解和回答准确性,真实对话场景一般为完整句子回复,根据回答真实性和有趣程度评分,可使用弱智吧问题测试提示词生成效果。 三、名字写对联教学——优秀创作者奖,百宝箱智能体 1. 智能体类型的选择:建议选择工作流的对话模式,支持工作流编排和携带历史对话记录,创建后切换为对话模式,注意在调整工作流节点前切换,否则会清空重置。 2. 确认分支情况:根据需求分析有两个特定分支(根据名字和祝福写对联、根据幸运数字写对联)和一个默认分支。 3. 用户意图识别:通过理解用户意图走不同分支,注意将意图介绍写清楚准确。 4. 幸运数字分支:用代码分支获取用户输入数字,匹配知识库并做赏析,代码中有容错机制。 5. 名字写祝福:根据用户输入的名字和祝福信息,提示词生成对应对联并输出,主要是提示词调试。 6. 通用兜底回复:在用户不符合前两个意图时进行友好回复,匹配知识库,结合匹配结果、历史记录和当前输入输出符合对话内容的回复。 7. 知识库:使用大模型生成 100 对对联,好看、经典、有意义。
2025-04-09
专门解决ai需求的问答
以下是关于专门解决 AI 需求的问答的相关内容: 关于我是谁: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互完成互动对话、信息获取、协助创作等任务。 使用方法: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(最新二维码在知识库首页),加入后直接@机器人。 2. 在 WaytoAGI.com 的网站首页直接输入问题即可得到回答。 做问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,无法准确理解语义。 3. 需要用更先进的 RAG 技术解决。 4. 在群中提供快速检索信息的便捷方式。 AI 商用级问答场景中让回答更准确: 要优化幻觉问题和提高准确性,需了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优。RAG(检索增强生成)由检索器和生成器组成,检索器从外部知识中找到相关信息,生成器利用这些信息制作精确连贯的答案,通过检索模式为大语言模型生成提供更多信息,使答案更符合要求。 向量:可把向量想象成空间中的点位,每个词或短语对应一个点,系统通过比较点的距离快速找到语义接近的词语或信息。 Agentic AI 中的问答: 对于最简单的常识性问答,可在 CursorChat 中输入问题得到答案,其相对细节的优势是可在同一界面调用 OpenAI、Anthropic 及本机私有 AI 进行问答。此外,Cursor 作为编辑器,可方便收集沉淀问答结果为复用文档,在进行文本相关任务时还有奇妙用法,如翻译中文博客。
2025-03-26
数据问答的最佳实践
以下是关于数据问答最佳实践的相关内容: Databricks: Databricks 作为大数据领域的领先服务商,在 RAG 设计上有自身特点和优势。用户输入问题后,从处理好的文本向量索引获取相关信息,结合提示词工程生成回答。上半部分 Unstructured Data pipeline 采用主流 RAG 方法,下半部分 Structured Data Pipeline 是其特征工程处理流程,也是最大特点。Databricks 从专业大数据角度出发,在准确度较高的数据存储中进行额外检索,发挥在 Real Time Data Serving 上的优势。可见其在 GenAI 时代将强大的 Lakehouse 数据处理能力与生成式 AI 技术深度融合,构建一体化解决方案。 OpenAI: 从 OpenAI Demo day 的演讲整理所得,在提升 RAG 准确率的成功案例中,OpenAI 团队从 45%的准确率开始,尝试多种方法。包括假设性文档嵌入(HyDE)和精调嵌入等,但效果不理想。通过尝试不同大小块的信息和嵌入不同内容部分,准确率提升到 65%。通过 Reranking 和对不同类别问题特别处理,进一步提升到 85%。最终,结合提示工程、查询扩展等方法,达到 98%的准确率。团队强调模型精调和 RAG 结合使用的强大潜力,仅通过简单的模型精调和提示工程就接近行业领先水平。 Loop: 具有环状结构的 RAG Flow 是 Modular RAG 的重要特点,检索和推理步骤相互影响,通常包括一个 Judge 模块控制流程,具体可分为迭代、递归和主动检索三种。 迭代检索:对于一些需要大量知识的复杂问题,可采用迭代方式进行 RAG,如 ITERRETGEN。每次迭代利用前一次迭代的模型输出作为特定上下文帮助检索更相关知识,通过预设迭代次数判断终止。 递归检索:特点是明显依赖上一步并不断深入检索,通常有判断机制作为出口,需搭配 Query Transformation,每次检索依赖新改写的 Query。典型实现如 ToC,从初始问题通过递归执行 RAC 逐步插入子节点到澄清树中,达到最大数量有效节点或最大深度时结束,然后收集所有有效节点生成全面长文本答案回答初始问题。
2025-03-17
如何搭建一个你这样的知识库智能问答机器人,有相关的流程教程吗?
搭建一个知识库智能问答机器人通常包括以下流程: 1. 基于 RAG 机制: RAG 机制全称为“检索增强生成”,是一种结合检索和生成的自然语言处理技术。它先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 要实现知识库问答功能,需创建包含大量文章和资料的知识库,例如有关 AI 启蒙和信息来源的知识库,并通过手工录入方式上传文章内容。 2. 利用 Coze 搭建: 收集知识:确认知识库支持的数据类型,通过企业或个人沉淀的 Word、PDF 等文档、云文档(通过链接访问)、互联网公开内容(可安装 Coze 提供的插件采集)等方式收集。 创建知识库。 创建数据库用以存储每次的问答。 创建工作流: 思考整个流程,包括用户输入问题、大模型通过知识库搜索答案、大模型根据知识库内容生成答案、数据库存储用户问题和答案、将答案展示给用户。 Start 节点:每个工作流默认都有的节点,是工作流的开始,可定义输入变量,如 question,由 Bot 从外部获取信息传递过来。 知识库节点:输入为用户的查询 Query,输出为从知识库中查询出来的匹配片段。注意查询策略,如混合查询、语义查询、全文索引等概念。 变量节点:具有设置变量给 Bot 和从 Bot 中获取变量的能力。 编写 Bot 的提示词。 预览调试与发布。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-03-14
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建 OneAPI,用于汇聚整合多种大模型接口。 搭建 FastGpt,这是一个知识库问答系统,可放入知识文件,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat,将知识库问答系统接入微信,但建议先用小号以防封禁风险。 2. Coze: 知识库问答是其最基础的功能,利用了大模型的 RAG 机制(检索增强生成)。 RAG 机制先从大型数据集中检索与问题相关的信息,再利用这些信息生成回答。 实现知识库问答功能需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传内容。 在设计 Bot 时添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地结合知识库返回的内容进行回答。
2025-03-05
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建步骤: 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口。 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat),接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。 2. Coze: 知识库问答利用了大模型的 RAG 机制,全称为“检索增强生成”(RetrievalAugmented Generation)。 RAG 机制先从大型数据集中检索与问题相关的信息,再使用这些信息生成回答。 实现知识库问答功能,需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传文章内容。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库返回的内容进行回答。
2025-03-05
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
DeepSeek,里面搜索怎么能出来图片?
要在 DeepSeek 中搜索出图片,您可以参考以下信息: 在即梦 AI 平台上找到 DeepSeek 入口,简单描述您想要的画面,DeepSeek 会生成详细的提示词,将提示词复制到生图功能的输入框,选择 3.0 模型,点击生成。 DeepSeek 使用平台包括 DeepSeek 官网、API(V3 需要为 0324 更新的版本,DS 官网及 API 已更新,如调用其它平台 API 需要查看 DS 版本号)。Deepseek 需要复制代码到 html 文件里,然后保存进行查看。 将下载的 html 文件及图片放到同一个文件夹,让 Cursor 进行图片增加即可。 此外,DeepSeek 深夜发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其具有统一 Transformer 架构,提供 1B 和 7B 两种规模,全面开源,支持商用,MIT 协议,部署使用便捷,Benchmark 表现优异等特点。模型地址: 模型(7B):https://huggingface.co/deepseekai/JanusPro7B 模型(1B):https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-04-09
ai搜索引擎哪个好
以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升用户搜索效率和体验。 2. Perplexity:聊天机器人式搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来将支持图像、语音等多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 做好 AI 搜索引擎的关键在于: 1. 准确度:取决于问答底座模型的智能程度和挂载上下文的信息密度。要选用智能的问答底座模型,并对 RAG 的检索结果进行排序去重以保证信息密度。 2. 差异化创新:错位竞争,如对问答结果以 outline/timeline 等形式输出,支持多模态搜索问答,允许挂载自定义信息源等策略。 3. 具备“准/快/稳”的特点:回复结果要准,响应速度要快,服务稳定性要高。 在使用 AI 搜索引擎时需注意: 1. 幻觉风险较高,大多数 AI 搜索引擎未连接到互联网。 2. 必应通常是较好的选择,特别是在某些特定场景下,如技术支持、决定吃饭地点或获取建议等,必应可能比谷歌更好。但这是一个迅速发展的领域,使用时应小心。对于儿童,可汗学院的 Khanmigo 提供由 GPT4 驱动的良好的人工智能驱动辅导。
2025-04-09
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
小白不懂MCP,请搜索waytoAGI中与智能体相关的内容(特别是视频形式的)让我来学习
以下是为您整理的关于 MCP 的相关内容: 一、什么是 MCP MCP(Model Context Protocol)是一种通用的方式,向各类大语言模型提供数据源和工具。它是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。可以将 MCP 想象成 AI 应用程序的 USBC 接口,为 AI 模型连接不同的数据源和工具提供了标准化方式。 二、相关文章的写作目的和探讨内容 1. 作者因在 WaytoAGI 社区阅读了他人优秀文章,决定逼自己做输出,对自我学习进行总结。 2. 文章从作者自身疑问出发,通过动手实践的方式探索:利用自然语言交互,大模型为什么会调用 MCP 工具;大模型调用 MCP 工具,从客户端到服务端发生了什么;安装了类似 MCP 工具,大模型如何选择用哪一个。 三、MCP 和 AI 工具的未来 自 OpenAI 发布函数调用以来,思考解锁智能体和工具使用生态系统所需条件。MCP 于 2024 年 11 月推出,在开发者和 AI 社区中已获广泛关注,被视为潜在解决方案。探讨了其如何改变 AI 与工具的交互方式、开发人员的使用情况及仍需解决的挑战。 四、MCP 小白图文使用教程 MCP 服务器有三大核心功能: 1. 资源:是服务器提供给 AI 的数据内容,如文件、数据库结构或特定信息,每个资源通过唯一 URI 标识。 2. 工具:允许 AI 模型执行特定操作,如查询数据库、调用 API 或执行计算,每个工具由名称和描述其模式的元数据唯一标识。 3. 提示:提供结构化消息和指令,用于与语言模型交互,客户端可以发现可用提示、检索其内容并提供参数进行自定义。 希望以上内容对您有所帮助。
2025-04-08
如何搜索知识库
以下是关于知识库搜索的相关信息: 知识库搜索网址:https://search.atomecho.cn/ Coze 中工作流配置知识库: 添加知识库:可同时添加多个知识库。 参数设置: 搜索策略:包括语义检索(像人类一样理解词与词、句与句之间的关系,适用于需要理解语义关联度和跨语言查询的场景)、全文检索(基于关键词进行,适用于特定名称、专有名词、术语、缩写词、ID 等场景)、混合检索(结合全文检索和语义检索的优势,并对结果进行综合排序召回相关内容片段)。 最大召回数量:选择从检索结果中返回给大模型使用的内容片段数量,数值越大,返回的越多。 最小匹配度:根据设置的匹配度选取要返回给大模型的内容片段,低于设定匹配度的内容不会被返回。 提示:最大召回数量和最小匹配度直接影响输出效果,需进行协调的多轮测试找出最优值。 认识大模型 Embedding 技术加实战中: Embedding 增强 GPT 的能力的过程包括搜索内部知识库检索相关文本、将检索到的文本内容部分发送给 GPT 大模型并向其提出问题。 具体操作步骤: 准备搜索数据(仅一次):搜集数据、切块、嵌入、存储(对于大型数据集的 Embedding 结果,可使用向量数据库保存)。 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings,使用 embeddings 按照与查询相关性对文本部分进行排序,距离函数推荐使用余弦相似性。 提问(每次查询一次):将问题和最相关的部分插入到发送给 GPT 的消息中返回 GPT 的答案。 Embedding 的作用:搜索(结果按与查询字符串的相关性进行排名)、聚类(文本字符串按相似性分组)、建议(建议包含相关文本字符串的项目)、异常检测(识别出相关性很小的离群值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。
2025-04-08
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识图谱
知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎的能力,增强用户的搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 知识图谱的关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图和三元组。 3. 知识融合: 实体对齐:消除异构数据中的实体冲突、指向不明等不一致性问题。 知识加工:对知识统一管理,形成大规模的知识体系。 本体构建:以形式化方式明确定义概念之间的联系。 质量评估:计算知识的置信度,提高知识质量。 知识更新:不断迭代更新,扩展现有知识,增加新知识。 4. 知识推理:在已有的知识库基础上挖掘隐含的知识。 在国家人工智能产业综合标准化体系建设指南中,知识图谱标准规范了知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
2025-04-17
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14