Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型有哪些前沿论文

Answer

以下是一些关于大模型的前沿论文:

  • 2017 年发布的《Attention Is All You Need》,开启了大模型发展的序幕。
  • 2018 年 Google 提出的 BERT(Bidirectional Encoder Representations from Transformers),创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模,参数规模在 110M 到 340M 之间。
  • 2018 年 OpenAI 提出的 GPT(Generative Pre-trained Transformer),开创了仅使用自回归语言建模作为预训练目标的方式,参数规模达 1750 亿。
  • 2021 年 Meta 提出的 Large LAnguage Model Approach(LLAMA),是首个开源模型,为构建更大规模、更通用的语言模型提供了方法与工具,参数规模在十亿到千亿之间。
  • 2024 年苹果公布的《MM1:Methods,Analysis & Insights from Multimodal LLM Pre-training》,这是一个具有高达 30B 参数的多模态 LLM 系列,探讨了不同架构组件和数据选择的重要性。
Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

这一切的起源是2017年发布的Attention Is All You Need([4])论文,之后基于大量语料的预训练模型百花齐放,比如:BERT(Bidirectional Encoder Representations from Transformers):Google在2018年提出,创新性的双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)让模型更好地推断语义信息。它开创了预训练语言表示范式,对自然语言处理产生了深远影响。参数规模:110M到340MGPT(Generative Pre-trained Transformer):OpenAI在2018年提出,开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号。它展示了通过无监督大规模预训练获得的语言生成能力,对研究与应用都带来重大影响。参数规模:1750亿Large LAnguage Model Approach(LLAMA):Meta在2021年提出,首个开源模型。为构建更大规模、更通用的语言模型提供了系统化的方法与工具。参数规模:十亿到千亿

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

这个可能有些同学不怎么听过这个词,但这个是大模型里,我认为最核心的个概念。因为其实经上面的原理讲解,其实大家不难发现,这与目前大模型所表现出来的,仍然对不上啊。为什么只是在计算相关性和概率,就能让大模型表现出难以解释的表达?所以这就是涌现…也就是科学家们认为,当训练的数据到了一定程度后,模型的能力会涌现出很多难以用逻辑去解释的现象。说实话在我看来,因为本身模型的学习就是在一个降维的latentspace中进行的,那我们尝试去用三维世界中的if-else去解释其行为,似乎本身也不靠谱不是么。不过现在倒也有一些论文使用跟踪标注等的的方式来尝试解释大模型内部的行为,这个看看就好了

苹果大模型MM1杀入场:300亿参数、多模态、MoE架构,超半数作者是华人

原创关注大模型的机器之心2024-03-15 12:44北京原文地址:https://mp.weixin.qq.com/s/i9bx6M32uk4Jq2KSRhv4ng机器之心报道机器之心编辑部苹果也在搞自己的大型多模态基础模型,未来会不会基于该模型推出相应的文生图产品呢?我们拭目以待。今年以来,苹果显然已经加大了对生成式人工智能(GenAI)的重视和投入。此前在2024苹果股东大会上,苹果CEO蒂姆・库克表示,今年将在GenAI领域实现重大进展。此外,苹果宣布放弃10年之久的造车项目之后,一部分造车团队成员也开始转向GenAI。如此种种,苹果向外界传达了加注GenAI的决心。目前多模态领域的GenAI技术和产品非常火爆,尤以OpenAI的Sora为代表,苹果当然也想要在该领域有所建树。今日,在一篇由多位作者署名的论文《MM1:Methods,Analysis & Insights from Multimodal LLM Pre-training》中,苹果正式公布自家的多模态大模型研究成果——这是一个具有高达30B参数的多模态LLM系列。论文地址:https://arxiv.org/pdf/2403.09611.pdf该团队在论文中探讨了不同架构组件和数据选择的重要性。并且,通过对图像编码器、视觉语言连接器和各种预训练数据的选择,他们总结出了几条关键的设计准则。具体来讲,本文的贡献主要体现在以下几个方面。首先,研究者在模型架构决策和预训练数据选择上进行小规模消融实验,并发现了几个有趣的趋势。建模设计方面的重要性按以下顺序排列:图像分辨率、视觉编码器损失和容量以及视觉编码器预训练数据。

Others are asking
AI相关的最前沿技术网站
以下是一些 AI 相关的前沿技术网站: 1. OpenAI:提供了诸如 GPT 等先进的语言模型和相关技术。 2. Google AI:涵盖了多种 AI 领域的研究成果和应用。 3. Microsoft Research:在 AI 方面有众多创新研究和技术展示。 此外,WaytoAGI 也是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯。在没有任何推广的情况下,WaytoAGI 两年时间已有超过 300 万用户和超千万次的访问量,其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云、通义千问、淘宝、智谱、支付宝等。
2025-04-15
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
现在ai最前沿的发展趋势是什么
AI 技术的发展历程和前沿趋势如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:例如元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:涵盖强化学习、运动规划、人机交互等。 7. 量子 AI:包含量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 在学习路径方面: 偏向技术研究方向: 1. 具备数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 熟悉自然语言处理,如语言模型、文本分类、机器翻译等。 5. 了解计算机视觉,如图像分类、目标检测、语义分割等。 6. 跟进前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 7. 进行科研实践,包括论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 掌握编程基础,如 Python、C++等。 2. 熟悉机器学习基础,如监督学习、无监督学习等。 3. 熟练使用深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,如项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 此外,去年生成式 AI 从不引人注意走到了 AI 50 强榜单的前列。今年,随着企业用户和消费者的 AI 生产力大幅提高,其成为前沿和中心。尽管 2023 年美国的大部分 AI 风投流向了基础设施领域,应用公司仍在 AI 50 强榜单中占据主导地位。如今,许多公司正将 AI 融入其工作流程,以此来快速达成 KPI。不远的将来,我们有望看到 UX 和 UI 围绕 AI 的功能进行重新设计。
2025-03-08
前沿ai学习网站
以下是一些前沿的 AI 学习网站: 1. WaytoAGI:这是一个致力于人工智能(AI)学习的中文知识库和社区平台。为学习者提供系统全面的 AI 学习路径,覆盖从基础概念到实际应用的各个方面。它汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯。平台提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等。此外,社区还定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量。其目标是让每个人的学习过程少走弯路,让更多的人因 AI 而强大。目前合作过的公司/产品包括阿里云,通义千问,淘宝,智谱,支付宝,豆包,火山引擎,marscode,coze,堆友,即梦,可灵,MiniMax 海螺 AI,阶跃星辰,百度,Kimi,吐司,liblib,华硕,美团,美的,360,伊利,魔搭,央视频,Civitai,Openart,Tripo3D,青椒云等。 3. 「通往 AGI 之路」的品牌 VI 融合了独特的设计元素,以彩虹色彰显多元性和创新,以鹿的形象象征智慧与优雅,通过非衬线字体展现现代感和清晰性,共同构建了一个充满活力和前瞻性的品牌形象。
2025-01-23
目前最前沿的ai服装模特app
目前较为前沿的 AI 服装模特相关的应用有: Stitch Fix 是一家服装公司,已使用 AI 向客户推荐特定服装,并正在尝试使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 InterAlia 可以帮助搭配服装。 在小红书上,有通过 AI 制作服装如 AI 小绿裙实现变现的案例,新手可用 mewxai 或幻火来制作,熟练者可用 sd 或 mj 制作。 此外,还有用 AI 定制萌娃头像等相关应用。
2025-01-06
AL最新前沿
以下是 AI 领域的一些最新前沿信息: 2024 年 2 月第一周: Maimo:能从任何内容中提取要点。 Jellypod:可将订阅内容变成播客。 ARTU:能汇总和总结内容。 Lepton Search:用 500 行代码构建的 AI 搜索工具。 VectorShift:AI 自动化应用构建平台。 Findr:AI 搜索您所有软件中的内容。 Recraft:AI 帮助创建平面内容和矢量标志。相关链接:,日期:2024/02/01。 2024 年 1 月第四周: 扎克伯格宣布 Meta 致力于实现 AGI,将两大 AI 研究团队 FAIR 和 GenAI 合并,并投入超 90 亿美元向英伟达采购超 34000 张 H100 显卡,预计 24 年底 Meta 的 GPU 算力达 60 万个 H100。 今年英伟达总的 H100 出货量将有 15 万张,Meta 采购量占 1/5。 Meta 正在开发名为 Llama 3 的大语言模型,以提升代码生成和逻辑推理能力。 扎克伯格推动开源的通用人工智能开发方式,这也是大家关注其进展和 Llama3 的原因。相关链接:,日期:2024/01/23。
2025-01-01
论文改写降重
以下是关于论文改写降重的相关信息: 在论文写作领域,AI 技术的应用正在迅速发展,为论文改写降重提供了多种辅助。以下是一些常见的方法和工具: 工具和平台: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,有助于提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 辅助写作方面: 一些专门的辅助写作工具,如论文改写降重工具,可以帮助文章降重和去除“AI”味。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。同时,需要注意的是,使用 AI 生成的内容应仔细甄别。
2025-04-15
我想让我的论文降低AIGC使用率,请问我有什么具体可以操作的办法
以下是一些降低论文中 AIGC 使用率的具体操作办法: 1. 使用 AIGC 论文检测工具: Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法是上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告。 :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 GPTZero:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 Content at Scale:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,为了从根本上降低 AIGC 使用率,您还需要注重自身的思考和研究,确保论文内容是基于您的独立见解和深入分析。
2025-04-14
我要写论文,需要用什么ai工具‘
在论文写作中,以下是一些常用的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:利用 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:使用抄袭检测工具确保原创性,做最后的格式调整。 AI 文章排版工具方面: 1. Grammarly:不仅检查语法和拼写,还具备一定排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有 AI 辅助的编辑器和插件简化过程。 4. PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化生成文档,适用于商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作排版。 选择合适的 AI 文章排版工具需考虑文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。
2025-04-14
我想让DEEPSEEK帮我写一篇论文,题目已经定好了,怎么给他输入指令
以下是给 DeepSeek 输入指令以帮助您写论文的一些建议: 1. 采用结构化提示词: 优先保留专业领域术语和技术词汇,这些术语通常具有高信息价值。 对不同类型的信息设置权重,按优先级排序:任务定义>关键约束>专业术语>定量信息>方法论>背景。 以完整语义单元为基本保留单位,而非单个词语,确保压缩后的内容仍保持语义完整性。 避免详细指导思考过程,让模型自主生成思维链。 2. 高阶能力调用: 文风转换矩阵:例如“用鲁迅杂文风格写职场 PUA 现象”“将产品说明书改写成《史记》列传格式”“把这篇论文摘要翻译成菜市场大妈能听懂的话”。 领域穿透技术:如行业黑话破解“解释 Web3 领域的'胖协议瘦应用'理论”。 3. 场景化实战策略: 创意内容生成。 技术方案论证。 4. 效能增强技巧: 对话记忆管理:包括上下文锚定(如“记住当前讨论的芯片型号是麒麟 9010”)、信息回溯(如“请复述之前确认的三个设计原则”)、焦点重置(如“回到最初讨论的供应链问题”)。 输出质量控制:针对过度抽象、信息过载、风格偏移等问题,使用相应的修正指令。 5. 特殊场景解决方案: 长文本创作:可采用分段接力法,如“先完成故事大纲→逐章扩展→最后进行伏笔校验”“确保新章节与前文的三处细节呼应”。 敏感内容处理:使用概念脱敏法(如“用经济学原理类比说明网络审查机制”)或场景移植法(如“假设在火星殖民地讨论该议题”)。 在输入指令时,您需要清晰明确地描述论文的题目、研究目的、主要论点、关键论据、期望的结构和风格等重要信息,以便 DeepSeek 能够为您生成符合要求的内容。
2025-04-14
生成论文第一章的绪论
以下是关于生成论文第一章绪论的相关内容: 首先,确定整个论文的大纲目录。如果有老师提供的示例报告,可以直接截图并用手机识别获取目录。 其次,确定整体的语言风格和特色。一般来说,论文的语言风格应是“逻辑清晰、层层递进、条理分明”。可以将范文交给 Claude 2 总结语言风格,但注意不要过于限制 GPT4,否则可能影响生成效果。 然后,让 GPT4 按照目录逐步生成章节内容。通过在 workflow 中设置循环结构,在其生成一段章节内容后,经同意再进行下一章节,否则重新生成。 此外,在生成内容前,需要 GPT4 判断某章节是否要调用 webpolit 插件查询相关信息后再撰写。这是较难的部分,可能需要不断尝试和迭代。若遇到困难,可向星球和群聊中的大佬求助。 利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 9. 生成参考文献:使用 AI 文献管理工具生成正确格式的参考文献。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并做最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-04-14
毕业论文的ai指令总结
以下是关于毕业论文的 AI 指令的总结: 1. 可以指定 AI 模仿某位资深人士的风格,如律师的逻辑严谨和言简意赅。 2. 要求 AI 为您提供多个例子,例如针对案件给出至少三种不同的诉讼策略,并分析每种策略的优劣势。 3. 采用 PEMSSC 方法,包括个性化的风格(Personality)、给参考或一定的逻辑结构(Example Inquiry)、从多个角度思考(Multiple Angles)、总结概括(Summarize)、使用区分符号(Separator)、明确能力或者角色(Capacity and Role)。 4. 对于大多数实际应用,建议专注于经过调整的指令语言模型,使用时要给清晰的指令,如指定文本的语气、要求集中讨论的内容,甚至可以提前指定阅读的文本。 5. 可以直接要求 LLM 帮写论文,如提供个人背景信息和指令让其写大学申请论文,但要注意这种使用方式的道德问题。
2025-04-14
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14