Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

你觉得人工智能带给人类的到底是提升还是毁灭呢?

Answer

人工智能带给人类的影响既有提升也有潜在的挑战,但并非必然导致毁灭。

从提升的方面来看:

  • 技术上可以解决类似于社会歧视等问题,如通过 RLHF 等方法。
  • 优化工作效率,虽然可能导致某些岗位的调整,但实际每个工作的组成部分不是单一的,人可以和人工智能更好地协同。例如放射科医生的案例,解读 X 光照片只是其工作的一部分,实际并未失业。
  • 可以成为解决气候变化和大流行病等问题的关键。
  • 作为自主的个人助理,代表人们执行特定任务,如协调医疗护理。帮助构建更好的下一代系统,并在各个领域推动科学进展。

潜在的挑战和担忧包括:

  • 可能放大人类的负面影响,需要在技术层级加以解决。
  • 导致失业,但能掌握人工智能的人会取代不会的人。
  • 存在人类毁灭的担忧,不过目前此类观点缺乏具体的说明和论证。

对于强人工智能,目前 ChatGPT 的崛起引发了相关讨论,但通用技术并非等同于强人工智能。对于复杂的神经网络和黑箱模型的研究仍在进行,如何使用和控制这些模型是业界和社会争论的热点。科技公司倾向于训练辅助人类的超级智能助手,而非自我改进升级的超级智能体,以推动新一轮的工业革命和经济增长。

总之,人工智能的发展带来了巨大的机遇和挑战,需要我们聪明而坚定地采取行动,以实现其正面影响并应对潜在风险。

Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:Generative AI for Everyone吴恩达

担忧一:是否会放大人类的负面影响在技术层级上解决类似于社会歧视等问题,如RLHF担忧二:导致失业人工智能会优化效率,但实际每个工作的组成部分不是单一的,人可以和人工智能更好的协同。吴恩达举例了,16年行业看低,放射科医生岗位的案例。但实际放射科医生没有失业,因为解读X光照片事实证明比当时看起来更困难,而且放射科医生工作的多部分组成,解读X光照片仅仅是一个部分。最终,能比较明确的是,会人工智能的人会取代不会人工智能的人担忧三:人类毁灭人工智能可能导致许多问题,但当出现人工智能会有毁灭性影响的观点,并评估论点现实性,吴恩达老师发现都不具体,也没有具体说明人类如何灭绝。人类有丰富的经验来控制比个体强大的事物,像公司与国家许多没有完全控制的事物,像飞机,还是有价值并且安全的如果关注其他的像气候变化和大流行病,AI可以成为解决的关键[heading4]强人工智能[content]ChatGPT的崛起导致大家认为,大模型可能是通用的。但是通用技术不是通用人工智能(准确来讲,Artificial General Intelligence是强人工智能)强人工智能定义是,可以如同人一样,可以做任何智力任务

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

因为算力的飞速提升、还有神经网络与硅谷人才网络的演化,我们有了生成式AI的革命,它带来了大语言模型。语言原本是人类智慧的火种,但现在我们已知的宇宙里,有一种人造的智能,可以用和我们一样的语言来独立的解释世界,这些人工智能就像神话里的盗火者。人类面对比自己更加聪明的物种出现的时候,天生就有一种警觉,它们的目的是什么?它们会毁灭我们么?Amazon的创始人Jeff Bezos在最近一次接受Lex Fridman采访的时候,就做了个形象的比喻:“现在大语言模型的智能,不像是我们发明出来的,而是召唤出来的”。对复杂的神经网络内隐藏秘密的研究才刚开始,我们如何使用和控制这些黑箱模型,是业界和社会争论最激烈的话题。有人认为AGI不加以控制,会导致人类灭亡;也有人认为现在的架构,再怎么扩展算力,也根本实现不了AGI。媒体报道上充满了各种矛盾且对立的观点,大家还十分喜欢围观这样的辩论,因为我们喜欢寻找大脑中默认想法的认同感。在这篇文章中,我引用了丰富的论点和最新的研究,尝试给大家呈现出尽可能客观的结论,就是我们还能用多模态的数据提升机器的智能,改进架构和强化训练的方法,可以让AI模型往逻辑推理、计划、记忆还有目标感更强的方向发展,Scaling Law依旧有效;但并不确定在更大规模的数据和训练中,是否会涌现出自主目标或者是我们定义不清晰的“意识”来。科技公司研发的约束方式是训练出辅助人类的超级智能助手,而不是可以自我改进升级的超级自能体,让AI渐进式的融入社会,从而推动新一轮的工业革命和经济增长。踩油门还带刹车是同时进行的,这样才能安全切顺滑的驾驶。

文章:Sam Altman|智能时代

简单概括:深度学习有效,随规模扩大预期改善,我们持续增加相关资源投入。就是这样;人类发现了一种算法,可以真正地学习任何数据分布(或者说,产生任何数据分布的潜在"规则")。令人震惊的是,计算能力和数据量越大,它帮助人们解决难题的能力就越强。不管我花多长时间思考这个问题,我都无法完全理解它的重要性。我们还有很多细节需要解决,但被任何特定挑战分散注意力是一个错误。深度学习是有效的,我们将解决剩余的问题。我们可以谈论很多关于下一步可能发生的事情,但主要的是,人工智能将随着规模而变得更好,这将导致对全球人民生活产生有意义的改善。人工智能模型将很快作为自主的个人助理,代表您执行特定任务,如帮助您协调医疗护理。未来,人工智能系统将变得如此出色,它们将帮助我们构建更好的下一代系统,并在各个领域取得科学进展。技术将我们从石器时代带到农业时代,再到工业时代。从这里开始,通往智能时代的道路由计算、能源和人类意志铺就。如果我们想让尽可能多的人接触到人工智能,我们需要降低计算成本,使其更加普及(这需要大量的能源和芯片)。如果我们不能建立足够的基础设施,人工智能将成为一种非常有限的资源,会导致战争,并主要成为富人的工具。我们需要聪明而坚定地采取行动。智能时代的曙光是一个历史性的发展,同时也带来极其复杂且高风险的挑战。这并非完全是个积极的故事,但潜在的正面影响如此巨大,我们有责任找出如何应对眼前的风险。我相信未来会非常光明灿烂,以至于现在任何人都无法对之进行公正的描述;智能时代的一个决定性特征将是巨大的繁荣。尽管这将逐步发生,但令人惊叹的胜利——修复气候、建立太空殖民地以及发现物理学的所有内容——最终将成为寻常。拥有近乎无限的智慧和丰富的能源——产生伟大创意和实现它们的能力——我们可以做很多事情。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
langchain到底是什么。如何理解。
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供了一系列工具、组件和接口,使利用大型语言模型(LLM)和聊天模型创建应用程序更便捷。 2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 具有模型抽象功能,能为用例选择合适模型,并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义处理步骤链,完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并调用工具。 7. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,并提供内存功能维护状态。 LangChain 还是一个为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性,以适应业务需求变化。作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握,同时充分考虑了应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-03-21
deepseek到底是什么?打个比方
DeepSeek 是一个在 AI 领域受到关注的品牌。它在硅谷受到关注和追逐,早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新引发了小范围轰动。DeepSeek 不是“中国式创新”的产物,其秘方更具硅谷风格。 DeepSeek 是基于 AI 模型的产品,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。它展示出媲美领先 AI 产品性能的模型,但成本较低,在全球主要市场的 App Store 登顶。在实际使用体验方面,在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。 需要注意的是,将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为其秘方就是多快好省也是不全面的。
2025-03-03
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
到底什么是大家说的AI
AI 分为 ANI 和 AGI 。ANI 即 artificial narrow intelligence 弱人工智能,它只能做一件事,比如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。AGI 即 artificial general intelligence ,能做任何人类可以做的事。 简单地说,AI 是让计算机或机器能像人类一样思考和学习的技术。比如在小学课堂上,会以学生能理解的语言来解释,先和学生互动,听听他们口中的 AI ,再引出概念。 从专业术语角度,机械学习是学习输入输出,从 A 到 B 的映射,是让电脑在不被编程的情况下自己学习的研究领域。数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 、项目结果等。神经网络/深度学习则有输入层、输出层、中间层(隐藏层)。 数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。通常以表格形式出现,每一列代表一个特定变量,每一行对应于某一成员的数据集的问题。数据分为结构化数据与非结构化数据,结构化数据可以放在巨大的表格中,非结构化数据如图片、视频、文本,机器处理起来更难。获取数据的方法有手动标注、观察行为、网络下载。使用数据时,如果开始搜集数据,可以马上将数据展示或者喂给某个 AI 团队。但数据不一定多就有用,有时数据中会出现不正确、缺少的数据,这就需要有效处理数据。
2025-02-01
到底有多强大
以下是关于不同 AI 相关内容强大之处的介绍: Sora:当不复制旧的,而是把新的、不可能的想法变成现实时,Sora 最为强大。它能帮助创意人员将想法变为现实,不仅擅长创造看起来真实的东西,创造完全超现实的东西的能力也令人兴奋。 LORA:在画风、人物、物品、动作姿态的固定方面表现强大,其文件承载的信息量远大于 Embedding,在还原真人物品时细节精度更高。使用时需注意搭配相应大模型和特定触发词。 Hypernetworks:主要针对画风训练,可像 LORA 一样加载使用。 Google 的 Gemini:是 Google DeepMind 团队开发的多模态模型,支持多种提示类型,能理解和处理几乎任何输入,结合不同类型信息并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,是原生多模态大模型,从设计之初就支持多模态,能处理多种形式的数据。
2025-01-26
ai到底是什么
AI(人工智能)是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,将 AI 当成一个黑箱来理解是一种可行的方式,即只需要知道它能通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成预设效果,且其生态位是一种似人而非人的存在。 从历史角度看,最初计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像根据照片判断一个人的年龄这类任务,由于无法明确具体步骤,所以是人工智能感兴趣的领域。 在应用方面,AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能为用户提供个性化的指导。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2025-01-08