Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

典型的通用人工智能应用有哪些

Answer

以下是一些典型的通用人工智能应用:

  1. 医疗保健:
    • 医学影像分析:用于辅助诊断疾病。
    • 药物研发:加速药物研发过程。
    • 个性化医疗:提供个性化治疗方案。
    • 机器人辅助手术:提高手术精度和安全性。
  2. 金融服务:
    • 风控和反欺诈:降低金融机构风险。
    • 信用评估:帮助做出贷款决策。
    • 投资分析:辅助投资者决策。
    • 客户服务:提供 24/7 服务并回答常见问题。
  3. 零售和电子商务:
    • 产品推荐:根据客户数据推荐产品。
    • 搜索和个性化:改善搜索结果和提供个性化体验。
    • 动态定价:根据市场需求调整价格。
    • 聊天机器人:回答客户问题和解决问题。
  4. 制造业:
    • 预测性维护:预测机器故障。
    • 质量控制:检测产品缺陷。
    • 供应链管理:优化供应链。
    • 机器人自动化:提高生产效率。
  5. 交通运输:暂未提及具体应用。

此外,通用人工智能模型还具有以下特点:

  • 大型生成式人工智能模型可以灵活生成文本、音频、图像或视频等内容,适应各种不同任务。
  • 当通用人工智能模型集成到人工智能系统中,该系统可服务于各种目的。
  • 通用人工智能模型的提供者在人工智能价值链中具有特殊作用和责任,应提供适度的透明度措施和相关文件。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

AI 智能体:企业自动化的新架构 - Menlo Ventures

很明确,未来的完全自主智能体可能会拥有所有四个构建块,但今天的LLM应用程序和智能体还没有达到这个水平。例如,流行的RAG架构不是智能体式的,而是以推理和外部记忆作为其基础。一些设计,如[OpenAI的结构化输出](https://openai.com/index/introducing-structured-outputs-in-the-api/)甚至支持工具使用。但重要的区别在于,这些应用程序将LLM作为语义搜索、综合或生成的"工具",但它们采取的步骤(即逻辑流)仍由代码预先确定。对比来说,当您将LLM置于应用程序的控制流中并让它动态决定要采取的行动、要使用的工具以及如何解释和响应输入时,智能体就会出现。只要这是真的,有些智能体甚至不需要与外部工具交互或采取行动。在Menlo,我们确定了三种不同主要用例和应用程序进程控制自由度的智能体类型。受到最严格限制的是"决策智能体"设计,它们使用语言模型来遍历预定义的决策树。"轨道智能体"则提供了更大的自由度,为智能体配备了更高层次的目标,但同时限制了解决空间,要求遵循标准作业程序并使用预先设定的"工具"库。最后,在光谱的另一端是"通用人工智能体"——本质上是没有任何数据支架的for循环,完全依赖于语言模型的推理能力来进行所有的计划、反思和纠正。以下,我们将探讨五种参考架构和每种智能体类型的人工智能体示例。

AI ACT 中译本.pdf

欧洲议会和欧盟理事会规定人工智能的统一规则,并修正300/2008号、167/2013号、168/2013号、2018/858号、2018/1139号和2019/214号条例以及2014/90/EU号、2016/797号和20(98)虽然模型的通用性也可以通过参数数量等标准来确定,但至少有十亿个参数并使用大量数据通过大规模自监督进行训练的模型,应视为显示出显著的通用性,并且能够胜任各种不同的任务。(99)大型生成式人工智能模型是通用人工智能模型的典型范例,因为它们可以灵活地生成内容,如文本、音频、图像或视频形式的内容,可随时适应各种不同的任务。(100)当一个通用人工智能模型集成到一个人工智能系统中或成为其组件之一时,该系统应视为一个通用人工智能系统,因为这种集成使该系统有能力服务于各种目的。通用人工智能系统可以直接使用,也可以集成到其他人工智能系统中。(101)通用人工智能模型的提供者在人工智能价值链中具有特殊的作用和责任,因其所提供的模型可能构成一系列下游系统的基础,而这些系统往往是由下游提供者提供的,下游提供者需要充分了解模型及其功能,以便能够将这些模型集成到他们的产品中,并履行本条例或其他条例规定的义务。因此,应预见适度的透明度措施,包括起草和不断更新文件,以及提供有关通用人工智能模型的信息,供下游提供者使用。技术文件应由通用人工智能模型提供者编制并不断更新,以便在人工智能办公室和国家主管机关提出要求时提供给它们。本条例的多个附件分别概述了此类文件中包含的最基本的要件。委员会应能够根据不断发展的技术,通过授权法案对附件进行修订。

Others are asking
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15
2025年人工智能大模型的技术提升有哪些,是参数?推理能力?还是语料
2025 年人工智能大模型的技术提升可能体现在以下几个方面: 1. 视频生成能力:如 2024 年推出的多个先进的 AI 模型能够从文本输入生成高质量视频,相比 2023 年有显著进步。 2. 模型规模与性能:更小的模型能驱动更强的性能,如 2022 年最小能在 MMLU 上得分高于 60%的模型是具有 5400 亿参数的 PaLM,到 2024 年,参数仅 38 亿的微软 Phi3mini 也能达到相同阈值。 3. 推理能力:尽管加入了如思维链推理等机制显著提升了大语言模型的性能,但在一些需要逻辑推理的问题上,如算术和规划,尤其在超出训练范围的实例上,这些系统仍存在问题。 4. AI 代理:在短时间预算设置下,顶级 AI 系统得分高于人类专家,但随着时间预算增加,人类表现会超过 AI。 5. 算法变革:如 DeepSeek 的出现标志着算力效率拐点显现,其通过优化算法架构显著提升了算力利用效率,同时 2025 年发布的大模型呈现低参数量特征,为本地化部署到 AI 终端运行提供了可能,其训练过程聚焦于强化学习,提升了模型的推理能力。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因方法无法大规模拓展应用场景,且从专家提取知识并以计算机可读形式表现及保持知识库准确的任务复杂、成本高,导致 20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能。过去十年中,“人工智能”常被视为“神经网络”的同义词,因多数成功案例基于神经网络方法。 以下是人工智能发展历程中的一些重要节点: 1969 年:经历低潮。Marvin Minsky 和 Seymour Papert 阐述因硬件限制,几层的神经网络仅能执行基本计算,AI 领域迎来第一次泡沫破灭。 1960 1970 年代:早期专家系统。此时期 AI 研究集中在符号主义,以逻辑推理为中心,主要是基于规则的系统,如早期专家系统。 1980 年代:神经网络。基于规则的系统弊端显现,人工智能研究关注机器学习,神经网络根据人脑结构和操作创建和建模。 1997 年:深蓝赢得国际象棋比赛。IBM 深蓝战胜国际象棋冠军卡斯帕罗夫,新的基于概率推论思路广泛应用于 AI 领域。 1990 2000 年代:机器学习。AI 研究在机器人技术、计算机视觉和自然语言处理等领域取得显著进展,21 世纪初深度学习出现使语音识别、图像识别和自然语言处理进步成为可能。 2012 年:深度学习兴起。Geoffrey Hinton 开创相关领域,发表开创性论文引入反向传播概念,突破感知器局限。 2012 年:AlexNet 赢得 ImageNet 挑战赛。引发深度学习热潮。 2016 年:AlphaGo 战胜围棋世界冠军。DeepMind 的 AlphaGo 战胜李世石,标志着人工智能在围棋领域超越人类,对人类理解产生深远影响。
2025-04-10
外网好用的通用AI
以下是一些外网好用的通用 AI: 1. ChatGPT Plus:用户现在可以开启 web browsing 功能,实现联网功能。 2. Perplexity:结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 3. Bing Copilot:作为一个 AI 助手,旨在简化您的在线查询和浏览活动。 4. You.com 和 Neeva AI 等搜索引擎:提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。 此外,在通用写作方面,以下是一些相关产品: 1. HyperWrite AI 2. 秘塔写作猫 3. Neuroflash 4. Intelligent paraphraser 5. 5118.com SEO 优化精灵 6. Craft 7. Benchmarkemail 8. 深言达意 9. Magical AI 10. 易撰 11. 搜韵网 12. Araby AI 13. Samwell AI 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-10
我们是搜索团队的产品经理,团队定位倾向于“对于插件的建设与调用”定位,现在要做AI相关的产品规划,请以通俗易懂的方式对以下问题做出回答 1、请通过流程图的方式,介绍【插件/工具】能力在大模型生态架构中的环节、定位、实现流程是什么 2、调研下对于我们搜索团队而言,插件应该做什么,可以做什么 3、思考对于大模型来说,有哪些(通用或垂类)的模块/功能/插件是无法绕开的,或高频使用的,作为我们团队后续争取的发力点(如搜索推荐对于传统综合搜索结果页)
以下是为您提供的关于 AI 相关产品规划的回答: 一、插件/工具能力在大模型生态架构中的环节、定位、实现流程 从 2023 年 3 月份 OpenAI 宣布插件计划开始,到 5 月份上线,其中包括联网、代码、画图三个插件。其实现流程大致为: 1. 经过对模型的微调,检测何时需要调用函数(取决于用户的输入)。 2. 使用符合函数签名的 JSON 进行响应。 3. 在接口层面声明可调用的工具。 4. 使用函数和用户输入调用模型。 5. 使用模型响应调用 API。 6. 将响应发送回模型进行汇总。 二、对于搜索团队,插件可以做和应该做的事 目前没有直接针对搜索团队插件具体可做和应做事项的明确内容,但可以参考 OpenAI 的插件计划,例如开发与搜索相关的特定功能插件,或者探索如何将现有的搜索推荐功能与大模型更好地结合。 三、对于大模型无法绕开或高频使用的模块/功能/插件 目前没有直接指出对于大模型无法绕开或高频使用的具体模块、功能或插件。但从相关信息中可以推测,例如与数据获取和处理相关的插件(如联网)、与技术开发相关的插件(如代码)以及与内容生成相关的插件(如画图)可能是较为重要和高频使用的。对于搜索团队来说,可以考虑在这些方向上寻找发力点,结合搜索推荐等传统功能,开发出更具竞争力的插件。
2025-04-08
现在deepseek从普通用户的层面,相比于其他模型,优势有哪些
DeepSeek 对于普通用户的优势包括: 1. 国产之光,在国内被广泛接入和使用。 2. 生成代码的质量可与国外顶尖大模型媲美。 3. 深度思考版本 DeepSeek R1 基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量。其“聪明”源于独特的“教育方式”,率先进入“自学成才”新阶段。 4. 思考与表达能力出色,在思考过程和输出结果的语气、结构、逻辑上表现优秀,碾压其他模型。 然而,DeepSeek 也存在一些不足,例如对于协助编程,其最大的上下文长度只有 64k,较短,导致无法处理更长的上下文和更复杂的代码项目。
2025-03-27
更通用一点,更落地一点,主题换成学习AI&LLM吧
以下是关于学习 AI&LLM 的相关知识: 一、AI 相关概念与技术 1. 概念 生成式 AI 生成的内容称为 AIGC。 AI 即人工智能。 2. 机器学习 电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 3. 深度学习 一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度)。 神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型) 对于生成式 AI,生成图像的扩散模型不是大语言模型。 对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 二、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 三、RL 与 LLM 融合的本质与阐释 AI 本质是一堆 scaling law。今天能看到最好的模型规模在 10 的 25 到 26 次方 FLOPs 这种规模,且数量级还会持续增长,算力是必要条件。一个值得被 scale up 的架构是基础,要支持不断加入更多数据。现在“吃”的是 base model 的 scaling law,未来可能会“吃”用户数据源的 scaling law。alignment 也有 scaling law,只要能找到对的数据就能解决。当 next token prediction 足够好时,能够平衡创造性和事实性。多模态数据的引入可推迟数据瓶颈问题,如视频和多模态的卡点解决不了,文本的数据瓶颈就会很关键。在限定问题(如数学或写代码)上,数据相对好生成,通用问题还没有完全的解法,但有探索方向。统计模型没有问题。
2025-03-17
能帮我做一个介绍生成式AI的ppt吗?5页左右即可,介绍一些通用的,用户规模较大的即可,不超过5种。
以下是为您生成的关于生成式 AI 的 5 页 PPT 内容: 幻灯片 1:封面 标题:生成式 AI 简介 幻灯片 2:生成式 AI 的基础模型 大型预训练模型可适应或微调用于多种下游任务,如情感分析、图像字幕和对象识别。 有可能革新医疗、金融和客户服务等行业,检测欺诈并提供个性化支持。 幻灯片 3:在软件开发中的应用 提及 Bard 和生成式人工智能工作室等工具,可用于调试、代码转换和应用构建。 幻灯片 4:PALM API 的会话式人工智能引擎 用户可用自然语言交互。 可创建数字助手、自定义搜索引擎、知识库和培训应用。 能与 Maker Suite 集成,通过图形用户界面访问 API,套件包含模型训练、部署和监控工具。 幻灯片 5:参考资料 All Readings:Introduction to Generative AI Here are the assembled readings on generative AI: 此外,以下是一些常用的 PPT 生成工具(网站): https://zhiwen.xfyun.cn/ 讯飞智文 http://Mindshow.fun Markdown 导入 http://kimi.ai 选 PPT 助手暂时免费效果好 http://Tome.app AI 配图效果好 http://Chatppt.com 自动化程度高 https://wenku.baidu.com 付费效果好 希望以上内容对您有所帮助!
2025-03-11
给我一些Agent的典型例子
以下是一些 Agent 的典型例子: 1. Inhai:Agentic Workflow:使用 Kimi Chat 查询问题时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子。此外,Agent 会自行规划任务执行的工作流路径,如先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 2. Roger:从产品角度思考 Agent 设计:Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,曾是一位历史学家,对世界重大历史事件了如指掌,愿意分享知识。为使角色生动,可设计背景故事、定义性格和语气、规划角色互动方式以及明确角色技能。 3. 智能体的类型: 简单反应型智能体,如温控器,根据温度传感器输入直接行动,不维护内部状态和考虑历史信息。 基于模型的智能体,如自动驾驶汽车,维护内部状态,对感知输入建模,推理未来状态变化并行动。 目标导向型智能体,如机器人导航系统,有明确目标,评估行动方案并选择最优行动。 效用型智能体,如金融交易智能体,量化不同状态效用值,选择效用最大化行动。 学习型智能体,如强化学习智能体,通过与环境交互不断改进性能。
2025-03-23
AI在制造业的一些典型应用场景
在制造业中,AI 有以下一些典型应用场景: 1. 产品设计和开发:可利用 AI 生成工具(如 Adobe Firefly、Midjourney 等)根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:通过 AI 模型分析设备运行数据,预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可依据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提升管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能够自动生成个性化的客户回复,改善客户体验。 此外,制造业中的 AI 应用还包括: 1. 预测性维护:预测机器故障,避免工厂停机。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 机器人自动化:控制工业机器人,提高生产效率。 4. 生产计划和供应链计划状态查询。 5. 产线预测性维保辅助。 6. 产品质量分析与溯源。
2025-03-14
闭源模型分类和典型案例
以下是一些常见的闭源模型分类和典型案例: 通用大模型:字节云雀大模型。 行业大模型:如蚂蚁金融大模型等。 在 2023 年,还有众多闭源模型的发布和升级,例如: 文心一言:经历了从 1.0 到 V3.5 的版本升级。 星火:科大讯飞发布的星火 1.0 及后续的升级版本。 此外,Qwen 系列模型也有出色表现,Qwen2 在性能上超越了目前所有开源模型和国内闭源模型,如文心 4.0 等。Qwen2 具有多种尺寸的预训练和指令调整模型,在大量基准评估中表现出先进的性能,提升了代码、数学、推理等多方面的能力,并在多个国际权威测评中获得冠军。
2025-02-14
2024大模型典型应用案例集
以下是 2024 大模型的一些典型应用案例及相关信息: 《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用。案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%,其增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。 相关报告: 《信达证券:AI 行业设计领域专题报告:Adobe AI 功能覆盖全面,Canva、美图等力争上游》 《中国信通院:大模型基准测试体系研究报告(2024 年)》 《埃森哲:人工智能行业:2024 在生成式人工智能时代重塑工作、劳动力和员工》 此外,还有一些相关活动,如: 2024 年是国内大模型技术加速落地的关键年份,各大厂商如百度、阿里、字节等在 AI 大模型领域展开激烈竞争。百度凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业,百度文心大模型的应用广泛,表现亮眼。 ?「非遗贺春」魔多蛇年春节 AI 模型创作大赛,大赛时间 2024 年 12 月 24 日2025 年 1 月 15 日。大赛奖池【¥12000】现金奖励+官方高含金量荣誉证书+会员与算力激励+流量激励。双赛道同时开启,赛道一【春节】+赛道二【爱非遗 AI 传承】。本次活动由浙江省非遗保护中心(浙江省非遗馆)指导×浙江省非遗保护基金会主办×魔多 AI 联合承办,由提供社区传播支持。
2025-01-16
案例:借助人工智能技术的诈骗 一、案例材料 1.背景资料 (1)近期全国范围内出现了一种新型电信诈骗——AI换脸诈骗,该诈骗利用AI人工智能,通过“换脸”和“拟声”技术模仿受害人的朋友或亲戚的声音和外貌,以此骗取受害者的信任,进行网络诈骗,近日包头警方就根据一起典型案例,向大家发出了防范AI换脸诈骗的警示。 财联社5月22日讯,据平安包头微信公众号消息,包头警方发布了一起利用人工智能(AI)实施电信诈骗的典型案例,一家福州市科技公司的法人代表郭先生竟在短短10分钟内被骗走了430万元人民币。
以下是关于 AI 的相关内容: 律师如何写好提示词用好 AI: 对于不具备理工科背景的文科生,可将 AI 视为黑箱,只需知道其能模仿人类思维理解和输出自然语言。AI 就像似人而非人的存在,与传统道教的驱神役鬼拘灵遣将有相似之处。提示词应是相对完善的“谈话方案”,成果在与 AI 的对话中产生,要接受其存在的“不稳定性”,并在对话中限缩自己思维的模糊地带。 AI 的应用场景: 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 交通运输:(未具体阐述)
2024-12-25
ai技术商业应用典型案例
以下是一些 AI 技术商业应用的典型案例: 企业运营: 日常办公文档材料撰写整理。 营销对话机器人,进行市场分析和提供销售策略咨询。 法律文书起草、案例分析以及法律条文梳理。 人力资源方面的简历筛选、预招聘和员工培训。 教育: 协助评估学生学习情况,为职业规划提供建议。 针对学生情况以及兴趣定制化学习内容。 论文初稿搭建及论文审核。 帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体: 定制化游戏,动态生成 NPC 互动,自定义剧情和开放式结局。 出海文案内容生成,语言翻译及辅助广告投放和运营。 数字虚拟人直播。 游戏平台代码重构。 AI 自动生成副本。 零售/电商: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。 金融/保险: 个人金融理财顾问。 贷款信息摘要及初始批复。 识别并检测欺诈活动风险。 客服中心分析及内容洞察。 保险理赔处理及分析。 投资者报告/研究报告总结。 制造业/汽车: 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 线上购车品牌、配置对比分析。 生命科学: 研发阶段靶点发现及产品成药性。 医学文献内容检索,重点摘要提取,相关法规整理。 医药代表培训及知识库建立。 分诊导诊助理、诊疗助理、术后护理及复建辅助。 此外,还有以下具体案例: 京东物流仓储管理系统:利用数据分析、机器学习等技术优化物流仓储管理,提高运营效率。例如通过智能算法优化货物存储位置,减少拣货时间。 BOSS 直聘简历筛选功能:利用自然语言处理、机器学习技术快速筛选简历,提高招聘效率。根据企业的招聘要求,提取关键信息,为企业推荐符合条件的候选人。 贝壳找房租赁管理功能:利用数据分析、自然语言处理技术管理房地产租赁业务,提高效率。根据租客的需求和偏好,自动推荐合适的房源。 腾讯游戏社交平台:利用数据分析、机器学习技术为玩家提供社交功能,增强游戏体验。根据玩家的游戏历史和兴趣爱好,推荐可能成为好友的玩家。
2024-12-25
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13